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Are there correlations between modes?



Inflation & cosmological perturbations

‣ Slow-roll inflation

• Observations: curvature perturbation                                        almost scale-invariant.

Reheating
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‣ Spectrum of perturbations
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Correlation functions

Power spectrum

Non-Gaussianity in the CMB

...

〈φ!pφ!q〉 ∝ δ(3)(#p− #q)Pφ(p)

〈φ !p1φ !p2φ !p3〉 = 0
...

Gaussian statistics

Bispectrum

〈φ!p1 · · · φ!p2n+1〉 = 0

〈φ!p1 · · · φ!p2n〉 ∝ 〈φ2〉n

In cosmology                              temperature anisotropies.δT

T
∼ φ ∼ 10−5



In cosmology                              temperature anisotropies.

Correlation functions

Power spectrum

Non-Gaussianity in the CMB

...

〈φ!pφ!q〉 ∝ δ(3)(#p− #q)Pφ(p)

...

Non-Gaussian statistics

Bispectrum

〈φ!p1 · · · φ!p2n〉 ∝ 〈φ2〉n

〈φ!p1 · · · φ!p2n+1〉 ∝ f2n−1
NL

〈φ !p1φ !p2φ !p3〉 ∝ fNL

δT

T
∼ φ ∼ 10−5

φ("x) = φg("x) + fNL(φ2
g("x) − 〈φ2

g〉)



Non-Gaussianity in the CMB

〈ζ!k1
ζ!k2

ζ!k3
〉 = (2π)3δ(3)($k1 + $k2 + $k3) B($k1,$k2,$k3).

The bispectrum in Fourier space is defined as

k1

k2
k3

It scales as B(λ"k1, λ"k2, λ"k3) = λ−6B("k1,"k2,"k3) .
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Non-Gaussianity in the CMB

〈ζ!k1
ζ!k2

ζ!k3
〉 = (2π)3δ(3)($k1 + $k2 + $k3) B($k1,$k2,$k3).

The bispectrum in Fourier space is defined as
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1

r2 ≡ k2/k1

It scales as B(λ"k1, λ"k2, λ"k3) = λ−6B("k1,"k2,"k3) .

Which shapes are possible?



Non-Gaussianity in the CMB

equilateral
local

〈ζ!k1
ζ!k2

ζ!k3
〉 = (2π)3δ(3)($k1 + $k2 + $k3) B($k1,$k2,$k3).

The bispectrum in Fourier space is defined as

Generally, models predict two types of shapes: local shape & equilateral.
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Single field inflation
Curvaton
inhomogeneous reheating
New ekpyrosis

DBI inflation
Higher derivatives,.....



Motivations

Theoretical scenarios

➡ Inflation                                    J. Maldacena  ’03

➡ Curvaton and Inhomogeneous reheating  

➡ DBI, Ghost inflation, new ekpyrosis,  ... fNL ∼ 100

fNL ∼ 100

fNL ∼ 5

fNL ! 10−1

Expect NG ~O(1) independently of 
primordial component!

−4 < f local
NL < 80 at 95% CL

Smith, Senatore & Zaldarriaga, ‘09
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•Calculate second order metric at recombination (MD),

•Propagate CMB photon in this metric 

•Compute the bispectrum on large scales                

Λ = 0.

z
!

11
00

〈δT
T

δT

T

δT

T
〉

H−1
dec

→ δT/T

→ fNL



• Primordial non-Gaussianity.

• Plasma effects: Physics of recombination. 

- Non-linear dark matter perturbations.

- Perturbed recombination.

- .....

➡Need to integrate full Boltzmann eqts. 

• CC and Radiation not included. 

• No tilt.

Effects neglected



Fluid description as a scalar

• Usual description of a perfect fluid coupled to GR       energy momentum tensor

• Naive counting        only one degree of freedom       scalar field description ?

• considering                          with                              and requiring perfect fluid eqt. of state

• Energy density                              ,  Pressure                .    Velocity 4-vector:                        .

• Example:  Radiation

⇒
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Abstract

1 Introduction

• 3rd order, CMB NG

• Same formalism as in inflation: symmetries

• Why using ζ: matching with inflation

2 The fluid description

In cosmology, when dissipative phenomena are negligible, the energy content of the Universe can be

approximated as a sum of perfect fluids. A perfect fluid is defined to have a stress-energy tensor of

the form

Tµν = (ρ + p)uµuν + pgµν , (1)

where ρ and p are the energy density and the pressure, while uµ is the fluid 4-velocity. Cosmological

fluids are usually taken to be irrotational. This assumption is justified by the absence of vorticity

in the initial conditions set by inflation and by the fact that vorticity is diluted by the expansion

of the Universe. The fluids are also taken to be barotropic, i.e., their pressure is a function of the

energy density only, p = p(ρ). Under these conditions, each fluid is characterized by a single scalar

function, so that it is not surprising that its dynamics can be described in terms of a scalar field.

1

p = wρ

⇒

⇒
Indeed, let us consider a derivatively coupled scalar φ in Minkowski spacetime, with Lagrangian

density1

L = P (X) , X = −∂µφ∂µφ . (2)

Varying the action yields the equation of motion

∂µ[P ′(X)∂µφ] = 0 . (3)

The stress-energy tensor of this field is given by

Tµν = 2P ′(X)∂µφ∂νφ + P (X)gµν , (4)

which is of the perfect fluid form (1) if we identify

ρ = 2P ′X − P , p = P , uµ =
∂µφ
√

X
. (5)

The perfect fluid interpretation makes sense only if ∂µφ is everywhere timelike and future directed.

Projecting the conservation equation of the stress-energy tensor of a fluid, ∂µT µ
ν = 0, along and

orthogonal to the fluid flux yields the equation of conservation of energy and the Euler equation. In

the case of the stress-energy tensor (4), the Euler equation is a trivial identity, while the conservation

of the energy is equivalent to the equation of motion (3).

The equation of motion (3) can be interpreted as the conservation of the current Jµ = 2
√

XP ′(X)·
uµ. This conservation is a consequence (by Nöther theorem) of the invariance of the action under

shift of φ : φ → φ + const. From the fluid point of view this current describes the conserved particle

density flux Jµ = nuµ. Therefore one can identify n = 2
√

XP ′(X). This yields to a physical inter-

pretation of the norm of ∂µφ:
√

X = (ρ + P )/n is the so called specific inertial mass [2, 3]. It is also

straightforward to verify that
√

X =
dρ

dn
, (6)

so that
√

X can be interpreted as a sort of conjugate variable with respect to n [4].

It is well known that for a perfect fluid the entropy per particle is conserved along the fluid flow.

This can be checked using the continuity equation ∂µJµ = 0, i.e. Eq. (3), and the energy conservation

uµ∂νT ν
µ = 0 [5]. Furthermore, as we have discussed, our approach describes a barotropic fluid which

implies that the entropy per particle is everywhere constant. In other words, the Lagrangian (2) can

only describe mechanical excitations of the fluid. It cannot take into account dissipative irreversible

processes, like heat conduction or viscosity.

We will be interested in studying perturbations around a homogeneous configuration φ = ct. In

Minkowski spacetime, this is a solution of the equation of motion for every c. Different values of

c describe different unperturbed values of the energy density ρ(c2). The dynamics of fluctuations

around this background can be studied by expanding the Lagrangian using φ = ct + δφ(t, %x), where

δφ describes the compressional mode of the fluid. At second order we obtain

L = P ′(c2)[ ˙δφ
2
− (∇δφ)2] + 2P ′′(c2)c2 ˙δφ

2
. (7)

1For Lagrangian approaches which describe also vorticous motion and non-barotropic perfect fluids see
[3, 4].

2

P (X) = X
1+w
2w ; w != 0

ρ = 2P ′X − P p = P uµ =
∂µφ√

X

From this expression one sees that the speed of sound of the excitations is given by

c2
s =

P ′(X)

P ′(X) + 2XP ′′(X)

∣

∣

∣

∣

X=c2
, (8)

which, as expected, is the usual adiabatic speed of sound in a barotropic fluid,

c2
s =

p′(X)

ρ′(X)

∣

∣

∣

∣

X=c2
=

dp

dρ
. (9)

Note that although the Lagrangian (2) is Lorentz invariant, this symmetry is spontaneously broken

by the vacuum φ = ct. For this reason the speed of perturbations will in general differ from the

speed of light c2
s = 1.

A standard case of barotropic fluid is given by a linear equation of state p = wρ with w = const.

From the first two equalities in Eq. (5) one deduces

P = X
1+w

2w , w != 0 , (10)

up to a proportionality constant which is irrelevant for the classical theory. In this case, the speed of

sound in Eq. (9) reduces to c2
s = w. As an example, one can consider a radiation fluid with equation

of state w = 1/3. In this case the Lagrangian (10) reduces to

L = X2 = (−∂µφ∂µφ)2 . (11)

The inclusion of gravity is completely straightforward. The equation of motion (3) becomes

∂µ[
√

gP ′(X)∂µφ] = 0 . (12)

In an expanding FRW background, the homogeneous solution satisfies now

n = P ′φ̇ ∝ a−3 . (13)

Indeed, for a constant w this is the standard redshift of the energy density,

ρ ∝ φ̇
1+w

w ∝ a−3(1+w) . (14)

To summarize, we are able to describe the dynamics of one or more fluids coupled with grav-

ity, within a Lagrangian formalism. This can be employed to study cosmological perturbations in

the presence of barotropic fluids. Note that the Lagrangian (2) is a particular case of the so called

k−essence/k−inflation scenarios [6, 7], where cosmological perturbations have been extensively stud-

ied starting from [8]. More recently the study of perturbations for this class of Lagrangians has been

extended to second order to study the non-Gaussianities produced during inflation [9, 10].

In the following we will be interested in the study of dark matter perturbations, which would

correspond to the dust case w = 0. Obviously the zero pressure limit must be taken with care, as

from Eq. (5) the Lagrangian strictly vanishes for a pressureless fluid.

3
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Fluid description as a scalar
• To describe a fluid, we need 3 scalars 

• Usually invariance under 

• Lagrangian is                                                        where          

• Velocity 4-vector 

• Energy density and pressure

• For perfect fluids

• The 2 pictures are related through a Legendre transformation

I. THE FLUID DESCRIPTION

Usually, in order to describe a fluid, we need to define 3 quantities φI , I = 1, 2, 3. As
explained in [3], these scalars describe not only the dynamics of the fluid, but also the
mapping between coordinate space xµ and the internal space defined by the dynamical
variables of the fluid such as the energy density, pressure, etc... We can always define the
”ground state” frame of the system, where φI ≡ xI , which is nothing but a time slicing. The
system can also have an internal symmetry group, which reflects the macroscopic properties
of the fluid. For instance, if the fluid is isotropic, the system will be invariant under

φI → DI
J φJ , (1)

where the DI
J are the usual SO(3) transformations. In the case of interest (the relativistic

fluid), this group is huge, allowing nevertheless a non-trivial invariant quantity which is
given by the determinant of BIJ ≡ ∂µφI∂µφJ , so the Lagrangian density can be written

L = F (B); B ≡ det BIJ , (2)

where F (B) is a generic function of B. Following [3], the 4-velocity of the above fluid is
defined as the 4-vector along which the φI ’s stay constant, i.e.

d

dτ
φI(x(τ)) ≡ uµ∂µφ

I . (3)

This condition together with the 4-velocity normalization uµuµ = −1 completely fixes the
4-velocity to be [3]

uµ =
1

6
√

B
εµνρσεIJK ∂µφ

I∂ρφ
J∂σφK . (4)

The stress-energy tensor of the above fluid reads

Tµν = F (B)gµν − 2F ′(B)B B−1
IJ ∂µφ

I∂νφ
J , (5)

which reminds us of the form of a perfect fluid stress-energy tensor

Tµν = (ρ + p)gµν + puµuν . (6)

Indeed, using Eq. (3), we get

ρ = −F (B), p = F − 2F ′(B)B. (7)

The speed of sound reads

c2
s ≡

∂p

∂ρ
=

p′(B)

ρ′(B)
=

F ′(B) + 2B F ′′(B)

F ′(B)
(8)

We can go further and obtain the explicit form of F (B) by requiring that the fluid has
a barotropic equation of state p = wρ, where w is a constant. We get
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1

F (B) = B
1+w

2 , (9)

and the speed of sound reduces to c2
s = w.

The above discussion shows that, starting with three variable, one can describe com-
pletely relativistic fluids with only one internal variable B, which represents the only com-
pressional mode available in the system. All the dynamical variables are constructed from
B. the reason for that, as observed in [3] is that the dynamics of vorticity is trivial. This
means for instance that if it vanishes on some initial time slice (which can always be done),
it will continue to be so at any later time. Thus in principle, it is possible to construct
completely equivalent descriptions of the relativistic fluid involving just one variable. The
simplest one, as we are used to scalar fields, involves derivatively coupled real scalar field.
Let’s see explicitely how this works.

Consider a real scalar field ϕ. The most general lagrangian one can write assuming the
shift symmetry ϕ(x) → ϕ(x) + C, where C is a real constant is

L = P (X); X ≡ −
1

2
gµν ∂µϕ∂νϕ. (10)

Computing the stress-energy tensor

Tµν = P (X)gµν + P ′(X)∂µϕ∂νϕ, (11)

one can read-off the pressure and energy density as

p = P (X), and ρ = 2XP ′(X) − P (X), (12)

where the 4-velocity is given by

uµ =
∂µϕ
√

2X
(13)

The sound speed is given as usual as

c2
s =

P ′(X)

P ′(X) + 2XP ′′(X)
. (14)

Demanding a barotropic equation of state determines P (X) as

P (X) = X
1+w

2w , w %= 0, (15)

and the sound speed reduces to c2
s = w.

The expression (15) shows that one can model a variety of cosmologically relevant fluids.
For instance choosing P (X) = X2 gives the usual radiation dominated universe. Choosing
ϕ̇ =const. gives inflation. However one cannot have pressureless matter by taking w = 0
in Eq. (15). The reason is since the pressure, and thus the Lagrangian (10), vanishes
identically for dark matter one cannot just plug-in w = 0 everywhere, but instead one has
to keep relevant powers of w during all computations and take carefully the limit w → 0
only at the end. We will see that this procedure gives the right answer eventhough naively
P (X) is singular for dark matter.

2

Now, since the two fluid descriptions above, in terms of F (B) and P (X) respectively
represent the same entity; the relativistic perfect fluid, they should be equivalent one to
the other. At first sight, this claim is not justified. Notice for instance that in the first
fluid description, pressureless matter is well-behaved, while in the second it is singular. It
turns-out that the two pictures are related through a Legendre transformation defined as
(for derivation see [3])

G(X) − F (B) = 2XG′(X) = −2BF ′(B), 2F ′(B) = −
1

2G′(X)
. (16)

Starting from Eq. (9) and using Eqs. (16), we get

G(X) = −w(1 + w)−
(1+w)

w X
1+w

2w , (17)

Which coincides with P (X) up to a prefactor. For constant w the prefactor of Eq. (17) is
irrelevant, therefore in the following we will use P (X) instead of G(X).

II. BACKGROUND DYNAMICS

We begin by considering the following action of an irrotational, isotropic perfect fluid
coupled to Einstein gravity. Following the discussion of the last section, the action can be
written as

S =
1

2

∫

d4x
√
−g[R + 2P (X)]. (18)

where, as explained above, P (X) and X are given by Eq. (15) and Eq. (10) respectively. We
choose to work in the system of units where M−2

P = 8πGN = 1. The background is assumed
to be described by the usual FRW metric defined as

ds2 = −dt2 + a2(t)dx2 (19)

Given the above metric, Einstein equations read

H2 =
1

3
(2XP,X − P ) , (20)

2Ḣ + 3H2 = −P, (21)

where H ≡ ȧ/a is the Hubble expansion parameter and the comma denotes a partial deriva-
tive. The equation of motion for the homogeneous scalar field reads

ϕ̈ + 3Hwϕ̇ = 0, (22)

where we have used the definition of the speed of sound Eq. (8) and the fact that c2
s = w in

our case. Although, as we will see, slow-roll is not a good approximation, we can define the
slow-roll parameters as

ε ≡ −
Ḣ

H2
=

3

2
(1 + w), η ≡

ε̇

εH
= 0. (23)
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G(X) = X
1+w
2w

I. THE FLUID DESCRIPTION

Usually, in order to describe a fluid, we need to define 3 quantities φI , I = 1, 2, 3. As
explained in [3], these scalars describe not only the dynamics of the fluid, but also the
mapping between coordinate space xµ and the internal space defined by the dynamical
variables of the fluid such as the energy density, pressure, etc... We can always define the
”ground state” frame of the system, where φI ≡ xI , which is nothing but a time slicing. The
system can also have an internal symmetry group, which reflects the macroscopic properties
of the fluid. For instance, if the fluid is isotropic, the system will be invariant under

φI → DI
J φJ , (1)

where the DI
J are the usual SO(3) transformations. In the case of interest (the relativistic

fluid), this group is huge, allowing nevertheless a non-trivial invariant quantity which is
given by the determinant of BIJ ≡ ∂µφI∂µφJ , so the Lagrangian density can be written

L = F (B); B ≡ det BIJ , (2)

where F (B) is a generic function of B. Following [3], the 4-velocity of the above fluid is
defined as the 4-vector along which the φI ’s stay constant, i.e.

d

dτ
φI(x(τ)) ≡ uµ∂µφ

I . (3)

This condition together with the 4-velocity normalization uµuµ = −1 completely fixes the
4-velocity to be [3]

uµ =
1

6
√

B
εµνρσεIJK ∂µφ

I∂ρφ
J∂σφK . (4)

The stress-energy tensor of the above fluid reads

Tµν = F (B)gµν − 2F ′(B)B B−1
IJ ∂µφ

I∂νφ
J , (5)

which reminds us of the form of a perfect fluid stress-energy tensor

Tµν = (ρ + p)gµν + puµuν . (6)

Indeed, using Eq. (3), we get

ρ = −F (B), p = F − 2F ′(B)B. (7)

The speed of sound reads

c2
s ≡

∂p

∂ρ
=

p′(B)

ρ′(B)
=

F ′(B) + 2B F ′′(B)

F ′(B)
(8)

We can go further and obtain the explicit form of F (B) by requiring that the fluid has
a barotropic equation of state p = wρ, where w is a constant. We get

1



Background dynamics

• With                                             Subtelties for       

• Perform computations and then take                at the end! 

• Background Evolution (FRW)

It behaves as a perfect fluid.

S =
1
2

∫
d4x
√
−g [R + 2P (X)] , X ≡ −∂µφ ∂µφ

w = 0.P (X) = X
1+w
2w ; w != 0

From this expression one sees that the speed of sound of the excitations is given by

c2
s =

P ′(X)

P ′(X) + 2XP ′′(X)

∣

∣

∣

∣

X=c2
, (8)

which, as expected, is the usual adiabatic speed of sound in a barotropic fluid,

c2
s =

p′(X)

ρ′(X)

∣

∣

∣

∣

X=c2
=

dp

dρ
. (9)

Note that although the Lagrangian (2) is Lorentz invariant, this symmetry is spontaneously broken

by the vacuum φ = ct. For this reason the speed of perturbations will in general differ from the

speed of light c2
s = 1.

A standard case of barotropic fluid is given by a linear equation of state p = wρ with w = const.

From the first two equalities in Eq. (5) one deduces

P = X
1+w

2w , w != 0 , (10)

up to a proportionality constant which is irrelevant for the classical theory. In this case, the speed of

sound in Eq. (9) reduces to c2
s = w. As an example, one can consider a radiation fluid with equation

of state w = 1/3. In this case the Lagrangian (10) reduces to

L = X2 = (−∂µφ∂µφ)2 . (11)

The inclusion of gravity is completely straightforward. The equation of motion (3) becomes

∂µ[
√

gP ′(X)∂µφ] = 0 . (12)

In an expanding FRW background, the homogeneous solution satisfies now

n = P ′φ̇ ∝ a−3 . (13)

Indeed, for a constant w this is the standard redshift of the energy density,

ρ ∝ φ̇
1+w

w ∝ a−3(1+w) . (14)

To summarize, we are able to describe the dynamics of one or more fluids coupled with grav-

ity, within a Lagrangian formalism. This can be employed to study cosmological perturbations in

the presence of barotropic fluids. Note that the Lagrangian (2) is a particular case of the so called

k−essence/k−inflation scenarios [6, 7], where cosmological perturbations have been extensively stud-

ied starting from [8]. More recently the study of perturbations for this class of Lagrangians has been

extended to second order to study the non-Gaussianities produced during inflation [9, 10].

In the following we will be interested in the study of dark matter perturbations, which would

correspond to the dust case w = 0. Obviously the zero pressure limit must be taken with care, as

from Eq. (5) the Lagrangian strictly vanishes for a pressureless fluid.
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k−essence/k−inflation scenarios [6, 7], where cosmological perturbations have been extensively stud-

ied starting from [8]. More recently the study of perturbations for this class of Lagrangians has been

extended to second order to study the non-Gaussianities produced during inflation [9, 10].

In the following we will be interested in the study of dark matter perturbations, which would

correspond to the dust case w = 0. Obviously the zero pressure limit must be taken with care, as

from Eq. (5) the Lagrangian strictly vanishes for a pressureless fluid.

3

⇒

3 Background and linear dynamics

Following the discussion of the last section, the dynamics of a perfect fluid coupled with gravity can

be described by the action

S =
1

2

∫

d4x
√
−g[R + 2P (X)] . (15)

where we chose units such that M−2
P = 8πGN = 1. In particular we are interested in the case p = wρ

with constant w, where P is given by eq. (10).

We assume a flat FRW metric ds2 = −dt2 + a2(t)d#x2. Friedmann equations read

H2 =
1

3

(

2XP ′ − P
)

, (16)

2Ḣ + 3H2 = −P , (17)

where H = ȧ/a is the Hubble expansion parameter. It is useful to define

ε ≡ −
Ḣ

H2
=

3

2
(1 + w) . (18)

Note that, although the notation is inspired by the inflationary case, we are not assuming that ε is

small.2

Following Maldacena [11], the study of perturbations can be done using the ADM splitting of

the metric [1],

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) . (21)

The action (15) becomes

S =
1

2

∫

dt d3x
√

h
[

N(R(3) + 2P ) + N−1
(

EijE
ij − E2

)

]

, (22)

where R(3) is the curvature scalar computed from hij , E ≡ Ei
i and

Eij ≡
1

2

(

ḣij −∇iNj −∇jNi

)

. (23)

The covariant derivatives ∇i are with respect to the 3d metric hij and all roman indeces i, j, . . . are

raised and lowered with this metric.

The action (15) describes 3 dynamical degrees of freedom: one scalar mode for the fluid excita-

tions and the 2 tensor elicities of the gravity waves. In the ADM formalism, these degrees of freedom

are contained in the scalar field φ and in the 3-metric hij , while the lapse N and the shift Ni are

not dynamical. Following [11] we choose the gauge

δφ = 0, hij = a2e2ζ ĥij , ĥij = δij + γij + 1
2γilγlj + . . . ,

det ĥ = 1 , γii = 0 , ∂iγij = 0 ;

(24)

2To simplify the comparison with the literature we give here the parameters used in Refs. [9, 10] for the
w = const case:

η ≡
ε̇

εH
= 0 , u ≡ 1 −

1

c2
s

= 1 −
1

w
, s ≡

1

H

ċs

cs

= 0 , (19)

and

Σ = XP ′ + 2X2P ′′ =
H2ε

w
, λ = X2P ′′ +

2

3
X3P ′′′ = −

H2ε

6w

(

1 −
1

w

)

. (20)

.
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Cosmological Perturbations

• This description allows to study perturbations à la Maldacena!

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) .

• Solve for       and             action for physical degrees of freedom. Ni N
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EijE
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]

, (22)

where R(3) is the curvature scalar computed from hij , E ≡ Ei
i and

Eij ≡
1

2

(

ḣij −∇iNj −∇jNi

)

. (23)

The covariant derivatives ∇i are with respect to the 3d metric hij and all roman indeces i, j, . . . are

raised and lowered with this metric.

The action (15) describes 3 dynamical degrees of freedom: one scalar mode for the fluid excita-

tions and the 2 tensor elicities of the gravity waves. In the ADM formalism, these degrees of freedom

are contained in the scalar field φ and in the 3-metric hij , while the lapse N and the shift Ni are

not dynamical. Following [11] we choose the gauge

δφ = 0, hij = a2e2ζ ĥij , ĥij = δij + γij + 1
2γilγlj + . . . ,

det ĥ = 1 , γii = 0 , ∂iγij = 0 ;

(24)

2To simplify the comparison with the literature we give here the parameters used in Refs. [9, 10] for the
w = const case:

η ≡
ε̇

εH
= 0 , u ≡ 1 −

1

c2
s

= 1 −
1

w
, s ≡

1

H

ċs

cs

= 0 , (19)

and

Σ = XP ′ + 2X2P ′′ =
H2ε

w
, λ = X2P ′′ +

2

3
X3P ′′′ = −

H2ε

6w

(

1 −
1

w

)

. (20)

.
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• The action reads

• Momentum and Energy constraint

where ζ describes the scalar mode and γ the tensor ones. This gauge is comoving in the sense that

the fluid 4-velocity is everywhere orthogonal to the equal time surfaces.

As the action does not contain time derivatives of N and Ni, these variables act as Lagrange mul-

tipliers, i.e. their equations of motion are algebraic constraints. These equations are the momentum

and Hamiltonian constraints of Einstein equations:

∇i

[

N−1
(

Ei
j − δi

jE
)]

= 0 , (25)

R(3) + 2P − 4XP ′ −
1

N2

(

EijE
ij − E2

)

= 0 . (26)

To warm up let us calculate the action for the scalar mode ζ at second order, to find the linear

equation of motion and the first order metric. As there is no mixing between ζ and γ at second order

in the action, in this Section we can set γ = 0. To compute the second order action, we need to solve

the constraints (25,26) and plug their solution for N and Ni back into the action (22). This has to

be done at first order only, since the second-order solutions for N and N i will multiply δL/δN or

δL/δN i at zeroth order, which vanish on the background [11]. To solve the momentum constraint

(25) we decompose Ni as Ni = ∂iψ + NT i where ∂iNT i = 0. By defining N = 1 + N1, one finds, at

first order,

N1 =
ζ̇

H
, NT i = 0 . (27)

Furthermore, one can find ψ at first order by solving the energy constraint (26),

ψ = −
ζ

H
+

a2ε

w
∂−2ζ̇ . (28)

Note that the last term of the previous equation contains w at the denominator so that one is not

allowed to take the limit w → 0 at this stage.

Substituting the solutions (27,28) into the action (22) one obtains, after some integration by

parts, the second order action for ζ,

S2 =

∫

dt d3x a3 ε

w

[

ζ̇2 −
1

a2
(∂ζ)2

]

. (29)

The equation of motion derived from this action is thus

ζ̈ + 3H ζ̇ −
w

a2
∂2ζ = 0 . (30)

We are interesting in the limit w → 0. Setting w = 0, the growing solution of Eq. (30) is simply

a constant, ζ = ζ0, where ζ0 is the perturbation generated during inflation, which remains constant

on super-Hubble scales independently of the equation of state3. However, to find the metric we

3For a generic equation of state the action for ζ is

S =

∫

dtd3x a3
ε

c2
s

[

ζ̇2 −
c2
s

a2
(∂ζ)2

]

, (31)

which gives the following equation of motion

ζ̈ + ζ̇
d

dt
ln

(

a3
ε

c2
s

)

−
c2
s

a2
∂2ζ = 0 . (32)

From this equation we see that ζ is constant on large scales, k/aH $ 1 independently of the energy content.
This is not true, for instance, for the Newtonian potential.
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Ḣ

H2
=

3

2
(1 + w) . (18)

Note that, although the notation is inspired by the inflationary case, we are not assuming that ε is

small.2

Following Maldacena [11], the study of perturbations can be done using the ADM splitting of

the metric [1],

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) . (21)

The action (15) becomes

S =
1

2

∫

dt d3x
√

h
[

N(R(3) + 2P ) + N−1
(

EijE
ij − E2

)

]

, (22)

where R(3) is the curvature scalar computed from hij , E ≡ Ei
i and

Eij ≡
1

2

(
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det ĥ = 1 , γii = 0 , ∂iγij = 0 ;

(24)

2To simplify the comparison with the literature we give here the parameters used in Refs. [9, 10] for the
w = const case:

η ≡
ε̇

εH
= 0 , u ≡ 1 −

1

c2
s

= 1 −
1

w
, s ≡

1

H

ċs
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Cosmological Perturbations (1st order)
Uniform scalar gauge:

• Perturbations at first order             and      at first order

• put back in action at 2nd order and solve eqt. of motion.

• metric at first order

where                     is constant wrt. time up to                  initial condition from inflation. 

• On large scales, in the Poisson (Newtonian) gauge

ds2 = −dt2 − 4
5H

∂iζ0 dtdxi + a2(1 + 2ζ0)d#x2

δφ = 0, hij = a2e2ζ ĥij , ĥij = δij + γij +
1
2
γilγlj + · · ·

det ĥ = 1, γii = 0, ∂iγij = 0.
Ni N

where ζ describes the scalar mode and γ the tensor ones. This gauge is comoving in the sense that

the fluid 4-velocity is everywhere orthogonal to the equal time surfaces.

As the action does not contain time derivatives of N and Ni, these variables act as Lagrange mul-

tipliers, i.e. their equations of motion are algebraic constraints. These equations are the momentum
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jE
)]

= 0 , (25)
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N2
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ij − E2

)
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To warm up let us calculate the action for the scalar mode ζ at second order, to find the linear

equation of motion and the first order metric. As there is no mixing between ζ and γ at second order

in the action, in this Section we can set γ = 0. To compute the second order action, we need to solve

the constraints (25,26) and plug their solution for N and Ni back into the action (22). This has to

be done at first order only, since the second-order solutions for N and N i will multiply δL/δN or

δL/δN i at zeroth order, which vanish on the background [11]. To solve the momentum constraint

(25) we decompose Ni as Ni = ∂iψ + NT i where ∂iNT i = 0. By defining N = 1 + N1, one finds, at

first order,

N1 =
ζ̇

H
, NT i = 0 . (27)

Furthermore, one can find ψ at first order by solving the energy constraint (26),

ψ = −
ζ

H
+

a2ε

w
∂−2ζ̇ . (28)

Note that the last term of the previous equation contains w at the denominator so that one is not

allowed to take the limit w → 0 at this stage.

Substituting the solutions (27,28) into the action (22) one obtains, after some integration by

parts, the second order action for ζ,

S2 =

∫

dt d3x a3 ε

w

[

ζ̇2 −
1

a2
(∂ζ)2

]

. (29)

The equation of motion derived from this action is thus

ζ̈ + 3H ζ̇ −
w

a2
∂2ζ = 0 . (30)

We are interesting in the limit w → 0. Setting w = 0, the growing solution of Eq. (30) is simply

a constant, ζ = ζ0, where ζ0 is the perturbation generated during inflation, which remains constant

on super-Hubble scales independently of the equation of state3. However, to find the metric we

3For a generic equation of state the action for ζ is

S =

∫

dtd3x a3
ε

c2
s

[

ζ̇2 −
c2
s

a2
(∂ζ)2

]

, (31)

which gives the following equation of motion

ζ̈ + ζ̇
d

dt
ln

(

a3
ε

c2
s

)

−
c2
s

a2
∂2ζ = 0 . (32)

From this equation we see that ζ is constant on large scales, k/aH $ 1 independently of the energy content.
This is not true, for instance, for the Newtonian potential.
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Ni1 = − 2
5H

∂iζ0

⇒

ζ = ζ0("x) O(w)→
φ = −3

5
ζ0

ds2 = a(τ)2
[
−(1 + 2φ)dτ2 + (1− 2φ)d#x2

]



Sachs-Wolfe at 1st order

MD ==>               and  

Temperature anisotropies @ 1st order

ds2 = a(τ)2
[
−(1 + 2φ)dτ2 + (1− 2φ)d#x2

]

Sachs-Wolfe (1967).

Intrinsic gravitational redshift

/δT

T
= −2φe

3
+ (φe − φo) =

φe

3

τ̃ = τ(1 + 2φ)1/6

a ∝ τ2 φ̇ = 0



Cosmological Perturbations (2nd order)
Uniform scalar gauge:

• Perturbations at second ordre              and     at second order

•

δφ = 0, hij = a2e2ζ ĥij , ĥij = δij + γij +
1
2
γilγlj + · · ·

det ĥ = 1, γii = 0, ∂iγij = 0.

Ni N⇒

the projector δij − ∂i∂j/∂2 we obtain an equation for the transverse part of the shift vector NT i

(∂iNT i = 0)

NT i = −
4

5

1

H
∂−2

[

∂iζ0∂
2ζ0 −

∂i∂k

∂2
∂kζ0∂

2ζ0

]

. (55)

Notice that the transverse part of the shift vanishes at first order, see eq. (27). The longitudinal

part of the momentum constraint gives an equation for the lapse function at second order

N2 =
2w

5a2H2
∂−2

[

−2ζ0∂
4ζ0 − 2(∂2ζ0)

2 + (∂i∂jζ0)
2 − 3∂iζ0∂i∂

2ζ0
]

+
w

175a4H4

[

−6(∂2ζ0)
2 − 51∂iζ0∂i∂

2ζ0 − 8(∂i∂jζ0)
2 + 23∂−2(∂i∂

2ζ0)
2

+ 23∂−2(∂iζ0∂i∂
4ζ0) + 46∂−2(∂i∂jζ0∂i∂j∂

2ζ0)
]

+ O(w2) . (56)

Although the lapse perturbation vanishes in the limit w → 0, its expression at order w is necessary

to solve the energy constraint, similarly to what happened at first order. This gives the second order

correction to the shift function

ψ2 =
1

5H
∂−2

[

(∂iζ0)
2 − 3∂−2∂i∂j(∂iζ0∂jζ0)

+
4

5a2H2

(3

7
(∂2ζ0)

2 + ∂iζ0∂i∂
2ζ0 +

4

7
(∂i∂jζ0)

2
)]

. (57)

Putting together equations (21), (27), (28), (54), (55), (56) and (57) we finally obtain the second

order metric for w = 0,

g00 = −1 +
4

25a2H2
(∂iζ)2 , (58)

g0i = −
1

5H
∂i

[

2ζ0 − ∂−2(∂jζ0)
2 + 3∂−4∂j∂k(∂jζ0∂kζ0)

−
4

5a2H2
∂−2

(3

7
(∂2ζ0)

2 + ∂iζ0∂i∂
2ζ0 +

4

7
(∂i∂jζ0)

2
)]

−
4

5

1

H
∂−2

[

∂iζ0∂
2ζ0 −

∂i∂k

∂2
∂kζ0∂

2ζ0

]

, (59)

gij = a2

[

1 + 2ζ0 + 2ζ2
0 −

2

5a2H2
∂−2∂k∂l(∂kζ0∂lζ0)

]

δij + a2γij . (60)

We now move to the calculation of the tensor contribution γ.

4.2 Gravitational waves

So far we did not discuss gravitational waves. At linear order tensor and scalar modes are decoupled,

so that gravitational waves can be completely neglected in the limit where the primordial contribution

generated by inflation is very small. Beyond the linear approximation scalar and tensor modes mix,

so that it is not consistent to set γ = 0. In the following we are going to assume that the amplitude

of primordial tensor modes is very small. Gravitational waves will only be generated by the scalar

modes through couplings of the form γζζ.

To study the generation of gravitational waves we need the quadratic action for γ and the cubic

terms of the form γζζ. The constraint equations will not enter neither in the derivation of the action

9



• In the Poisson gauge, the metric in MD reads

where 

Metric @ 2nd order

ds2 = a2(τ)
{
−(1 + 2Φ)dτ2 + 2ωidxidτ + [(1− 2Ψ)δij + γij ]dxidxj

}
,

Φ = φ +
[
φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ)

]

2
21a2H2

∂−2
[
2(∂i∂jφ)2 + 5(∂2φ)2 + 7∂iφ∂i∂

2φ
]

,

Ψ = φ−
[
φ2 +

2
3
∂−2(∂iφ)2 − 2∂−4∂i∂j(∂iφ∂jφ)

]

+
2

21a2H2
∂−2

[
2(∂i∂jφ)2 + 5(∂2φ)2 + 7∂iφ∂i∂

2φ
]

,

ωi = − 8
3aH

∂−2
[
∂2φ∂iφ− ∂−2∂i∂j(∂2φ∂jφ)

]
,

γij = −20
(

1
3
− j1(kτ)

kτ

)
∂−2PTT

ij kl (∂kφ∂lφ) .

Bartolo, Matarrese & Riotto, ’06

LB, P. Creminelli, J. Noreña, F.  Vernizzi,  ‘08. 



• Temperature anisotropies @ 2nd order

1. Temperature related to photon frequency

2. Geodesic equation

e = emission Last scattering surface.

o = observation.

δT

T
In preparation with P. Creminelli, G. D’Amico, J. Noreña, F.  Vernizzi.

@ 2nd order on large scales

To(n̂) =
ωo

ωe
Te("xe) ,

ωo

ωe
=

ae

ao

√
1 + 2Φe

1 + 2Φo

[
1 +

∫ τo

τe

dτ
(
Φ′ + Ψ′ + ω′

in̂
i − 1

2
γ′

ij n̂
in̂j

)]
.



• Temperature anisotropies @ 2nd order

• Various contributions that have to be added up.  Can’t neglect any of them.

- Intrinsic contribution

- Integrated contribution

‣ ISW or Rees-Sciama

‣ Vector

‣ Tensor

- Lensing

δT

T
LB, P. Creminelli, G. D’Amico, J. Noreña, F.  Vernizzi. ‘09

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

@ 2nd order on large scales

Pyne &  Carroll 95, Molerrach & Matarrese 97 



• For large multipoles, we can use the flat-sky formalism. 

• Not accurate on large scales, however expressions are more tractable.

• Pick a small patch of the sky with direction                              and expand around it.

• Work with 2d Fourier transform instead of spherical harmonics.

• The bispectrum reads

• It scales as 

The flat-sky approximation

ẑ = (mx, my, 1)

a! =
∫

d2 !m
δT

T
(n̂) e−i"!·"m ,

δT

T
(n̂) =

∫
d2#

(2π)2
a! ei"!·"m

〈a!1a!2a!3〉 = (2π)2δ(2)(#$1 + #$2 + #$3)B($1, $2, $3)

B(λ"1, λ"2, λ"3) = λ−4B("1, "2, "3).

r2 ≡ !2/!1
r3 ≡ !3/!1

1



• k-independent is of local type

• k-dependent is of equilateral type

Intrinsic Contribution

0.0 0.5 1.0

0.6

0.8

1.0

0.00

0.01

0.02

r2

r3

−r2r3Bintr

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

f equil
NL = 1.21

f local
NL = −1/6



RS bispectrum is of the equilateral type.

Rees-Sciama Contribution

0.0

0.5

1.0

0.6
0.8

1.0

!0.005
0.000
0.005
0.010

r2

r3

−r2r3BRS

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

f equil
NL = 0.74



Integrated Vector Contribution

0.0

0.5

1.0

0.6

0.8

1.0

!0.01

0.00

0.01

r2

r3

r2r3BV

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

f equil
NL = −0.84

Vector bispectrum is of the equilateral type.



Integrated Tensor Contribution

0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

!0.010
!0.005
0.000
0.005
0.010

r2

r3

r2r3Bγ

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

f equil
NL = −0.61

Tensor bispectrum is of the equilateral type.
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〈δT
T

δT

T

δT

T
〉

!α = −2
∫ τo

τe

dτ
τ − τe

τo − τe

!∇‖φ .

) !α

Lensing

δT

T
(n̂)

∣∣∣
lens

=
δT

T
(n̂ + "α) ! δT

T
(n̂) + "α · "∇n̂

δT

T
(n̂)



• local 

• equilateral

Lensing

δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,
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!0.2

0.0

0.2
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r2r3Blens

f equil
NL = 2.87

f local
NL = − cos(2θ)



• Total bispectrum dominated by lensing ==>mostly equilateral.

Total Bispectrum
δT

T
(n̂) =

[
1
3φ + 1

18φ2 + 1
3∂−2

(
(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)

)]
e

+
∫ τo

τe
dτ

(
Φ′ + Ψ′ + ω′

in̂
i − 1

2γ′ij n̂
in̂j

)
+ 1

3'α · '∇n̂φe ,

0.2
0.4

0.6
0.8

1.0

0.6

0.8

1.0

!0.2

0.0

0.2

r2

r3

r2r3Btotal

0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

!0.2

0.0

0.2

r2

r3

−r2r3Btotal

f equil
NL = 3.13



• Total bispectrum dominated by lensing ==>mostly equilateral.

• Squeezed limit 

• Out of reach of PLANCK satellite.

• Refinements of computation

- Small scale plasma effects.

‣ Non-linear DM at short scales. (Bartolo, Matarrese, Riotto 06, Pitrou, Bernardeau, Uzan 08)

‣ Perturbed recombination (Khatri, Wandelt 08, Senatore, Tassev, Zaldarriaga 08) 

‣ Full control of various effects (Nitta, Komatsu, Bartolo, Matarrese, Riotto 08)

- Inclusion of tilt.

- Full-Sky computation.

Conclusions and outlook

f equil
NL = 3.13

f local
NL = −1/6− cos(2θ)



• Total bispectrum dominated by lensing ==>mostly equilateral.

• Squeezed limit 

• Out of reach of PLANCK satellite.

• Refinements of computation

- Small scale plasma effects.

‣ Non-linear DM at short scales. (Bartolo, Matarrese, Riotto 06, Pitrou, Bernardeau, Uzan 08)

‣ Perturbed recombination (Khatri, Wandelt 08, Senatore, Tassev, Zaldarriaga 08) 

‣ Full control of various effects (Nitta, Komatsu, Bartolo, Matarrese, Riotto 08)

- Inclusion of tilt.

- Full-Sky computation.

Non-Gaussianity is a powerful tool to test theories of the early universe.

Conclusions and outlook

f equil
NL = 3.13

f local
NL = −1/6− cos(2θ)


