Minimal matter at the LHC

arXiv:0908.1567 with E. Del Nobile, D. Pappadopulo and A. Strumia

Roberto Franceschini

EPFL Lausanne

13/11/09

Introduction	Gauge decays	Signatures	LHC	Di-quarks	Di-leptons	Heavy leptons	Early birds	Conclusions
Outlin	าย							

- 1 Introduction
- 2 Gauge decays
- 3 Signatures
- 4 LHC
- 5 Di-quarks
- **6** Di-leptons
- Heavy leptons
- 8 Early birds
- Onclusions

Introduction Gauge decays Signatures LHC Di-qua	rks Di-leptons Heavy leptons Early birds Conclusions
popular "motivated" BSM	
	Minimal "useless" Matter
Supersymmetry	$\mathcal{L} \supset \; \lambda \; arphi_{\textit{NP}} \Phi_{\textit{SM}} \Phi_{\textit{SM}}$
Kaluza-Klein	
 Little Higgs 	Lorentz invariance
	SM gauge G _{SM} invariance
Experiments \Rightarrow Matter Parity	0 0 0
	Experiments $\Rightarrow \lambda \ll 1$
no $\varphi_{NP} \Phi_{SM} \Phi_{SM}$ interactions	"effective parity"
Matter Parity	
symmetry to provide a DM	and
candidate	 DM candidate through higher
easy-to-hide new physics	reps of G _{SM}

$\mathcal{L} \supset \lambda \varphi_{NP} \Phi_{SM} \Phi_{SM} + \mathcal{L}_{mass}$

Framework

- neglect higher dimensional operators ok because of weak coupling
- no new interactions i.e. no new vectors

(for new vectors see Kilic, Okui, Sundrum arXiv:0906.0577, Barbieri, Corcella, Hernandez, Torre, Trincherini arXiv:0911.1942)

• add only one spin 0 or $\frac{1}{2}$ particle

Predictive scenario: gauge production

model independent searches

quantum numbers are the only assumption

the pheno of a set of new multiplets could be very different

	-	
Roberto	Francesc	hini
TIODCITO	I Tunocao	

Scalars: couplings and decays

signatures of new scalars	type	couplings to	$ Q = T_3 + Y $	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	spin	Name
	LL L	LL, QU, QD LL	0,1	1	1	2 1	0	Ē
QQ. neavy quarks	LL	$E\bar{E}$	2	1	1	2	0	\tilde{E}^2
di-jet resonances	type-II see-saw	LL, H^*H^*	0, 1, 2	1	3	1	0	\tilde{E}_3
· · · · · · ·	LQ		1/3,2/3	3	2	1 6	0	Q
LL, EE: heavy leptons	LQ	LU, EQ $LO, \overline{EU}, UD, \overline{OO}$	2/3,5/3	3 5	2	6 1	0	Q1/0 D
aloon lontonio aignalo		LQ, LO, OD, QQ LO, \overline{OO}	1/3 2/3 4/3	3	3	3	0	\tilde{D}_{n}
clean replonic signals	QQ	$UD, \overline{Q}\overline{Q}$	1/3	6	1	$\frac{3}{\frac{1}{2}}$	ŏ	\tilde{D}_6
I O: lontoquarke	QQ	$\bar{Q}\bar{Q}$	1/3, 2/3, 4/3	6	3	13	0	\tilde{D}_{36}
	QQ	$\overline{D}\overline{D}$	2/3	3	1	23	0	\tilde{U}
	QQ	DD	2/3	6	1	23	0	\tilde{U}_6
	QQ	UU, ED	4/3	3	1	43	0	$\bar{q}^{4/3}_{-4/3}$
 avatia abargas 	QQ		4/3	6	1	4 3 1	0	<i>q</i> ₆
V EXULL CHarges	QQ	QU, QD	0, 1	8	2	2	0	H_8

old and new friends

Leptoquarks, See-Saw mediators, supermodel candidates, ...

only quantum numbers matter

no heavy flavors involved in the decay, i.e. in some model the search could be easier

irds Conclusions

Fermions: couplings and decays

Name	$_{\rm spin}$	$U(1)_Y$	$SU(2)_L$	$SU(3)_c$	$ Q = T_3 + Y $	couplings to	type
N	1 2	0	1	1	0	LH	type-I see-saw
L'	$\frac{\overline{1}}{2}$	$-\frac{1}{2}$	2	1	0, 1	EH^*	LH
E'	<u>1</u> 2	ĩ	1	1	1	LH^*	LH
N_3	$\frac{1}{2}$	0	3	1	0, 1	LH	type-III see-saw
E_3	1/2	1	3	1	0, 1, 2	LH^*	LH
$L^{3/2}$	1/2	3	2	1	1, 2	$\bar{E}H^*$	LH
Q'	1 2	<u>1</u> 6	2	3	1/3, 2/3	HU, H^*D	QH
U'	$\frac{\overline{1}}{2}$	$-\frac{2}{3}$	1	ā	2/3	HQ	QH
D'	<u>1</u> 2	13	1	3	1/3	H^*Q	QH
U_3	1/2	23	3	3	1/3, 2/3, 5/3	$\bar{Q}H^*$	QH
D_3	$\frac{\overline{1}}{2}$	<u>1</u> 3	3	3	1/3, 2/3, 4/3	QH^*	QH
$Q^{5/6}$	$\frac{\overline{1}}{2}$	56	2	3	1/3, 4/3	$\bar{D}H^*$	QH
$Q^{7/6}$	1/2	$\frac{7}{6}$	2	3	2/3, 5/3	UH^*	QH

signatures of new fermions

- QH: heavy quarks jet + V
- LH: heavy leptons
 \$\ell + V\$
 - mET + V
- sources of SM vectors
- exotic charges

old and new friends

exotic fermions, fourth vectorial generation, fermionic see-saw mediators, etc.

only quantum numbers matter

no heavy flavors involved in the decay, i.e. in some model the search could be easier

Roberto Franceschini

small splittings: soft is hard to detect

On top of the gauge invariant mass term $M\bar{\psi}\psi$ or $M^2|\phi|^2$ a mass splitting arises at loop level:

$$\Delta M = M_{Q+1} - M_Q = (1 + 2Q + \frac{2\gamma}{\cos \theta_W})\alpha_2 M_W \sin^2 \frac{\theta_W}{2} = 166 \,\mathrm{MeV} \cdot (1 + 2Q + \frac{2\gamma}{\cos \theta_W})$$

without other sources of splitting this poses serious experimental issues (track algorithm, fakes, QCD longlived ...)

$$\Gamma(X_{Q+1} \to X_Q \pi^+) = c \frac{G_{\rm F}^2 V_{ud}^2 \Delta M^3 f_{\pi}^2}{\pi} \sqrt{1 - \frac{m_{\pi}^2}{\Delta M^2}} \sim \frac{1}{\rm mm}$$

$$\Gamma \sim rac{M\lambda^2}{4\pi} \sim rac{1}{3\,\mathrm{cm}} rac{M}{\mathrm{TeV}} rac{\lambda^2}{10^{-16}}$$

$1 \neq many$

$$\mathcal{L} = \boldsymbol{M}\bar{\psi}\psi + \boldsymbol{m}\bar{\chi}\chi + \kappa\bar{\chi}\psi + \dots$$

significant mixing can produce decay chains with hard visible particles

	F	L::
BODELIO	Francesc	nını
	I Tunocao	

EWSB: eating a Goldstone boson

$$\begin{split} \lambda H \bar{\Psi} \psi_{SM} &\to \lambda v \bar{\Psi} \psi \text{ and the mass matrix} \begin{pmatrix} M & \lambda v \\ \lambda v & 0 \end{pmatrix} \text{ is made} \\ \text{diagonal with } \psi_{SM} &\to \psi_{SM} + \frac{\lambda v}{M} \Psi, \ \Psi \to \Psi - \frac{\lambda v}{M} \psi_{SM} \text{ obtaining a} \\ \text{interaction} \\ \frac{\lambda g v}{M} W^{\mu} \bar{\Psi} \gamma_{\mu} \psi_{SM} \end{split}$$

- definite prediction for the BR of fermions into states with W^{\pm}, Z^0, h
- no decay into photons
- electroweak symmetry still visible in the absence of some vertex i.e. the interaction $L^{3/2}EH^*$ do not generate the decay $L^{3/2,+} \rightarrow \nu W^+$

Signatures summary

- scalar di-quark resonances 4j
- scalar di-lepton resonances *lllll*, *ll* mET
- heavy leptons
 ℓℓVV (ℓ+ℓ+ℓ⁻ mET, ℓ+ℓ+ℓ⁻ mETjj, ...)
- heavy quarks
 2j2V (4jℓ mET, 4j2ℓ, ...)
- Ieptoquarks

Introduction Gauge decays Signatures LHC Di-quarks Di-leptons Heavy leptons Early birds Conclusions

pp collisions at design regime

- C.o.M. Energy=14 TeV
- $\mathcal{L} = 10^{34} \cdot cm^{-2}s^{-1}$
- ${\, \bullet \,} \sim 10^4$ protons per bunch
- \sim 25 pp interactions per crossing
- bunch crossed each 25 ns

scheduled and unscheduled

European Organization for Nuclear Research News: 6 November 2009 LHC "hird-bread" strike was identified, re-cooling of the machine began and the sectors were CERN Joos News: 9 November 2009 Particles have gone half way round the LHC

General Purpose Detector (CMS)

$$\vec{p} = (p_T, \eta, \phi)$$
$$p_T = \sqrt{p_X^2 + p_y^2} = p \cdot \sin \theta$$
$$\eta = \ln \cot \frac{\theta}{2}$$
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Roberto Franceschini

LHC Di-quarks

rks Di-leptons

Heavy leptons

Early birds

Conclusions

Give a shape to the background if you do not like it!

The signal emerges out of a low-tail of the BG

(slight changes from parton-shower are expected).

ΔR > 0.4, η < 2.5

$$m^2(j_a,j_b)\simeq p_T^{(a)}p_T^{(b)}\Delta R^2$$

The BG is incoherent hence it has no reason to have jet pairs with invariant mass much smaller than the hard $p_T^{(j)}$.

applicable to other searches

h → *WW* under examination with A. Wulzer

- low production σ
 (only mediated by hypercharge)
- very clean final state
- discovery only suffers lack of events
- Tevatron type-II-SS dedicated search says M > 130 GeV
- easy discovery, intersting with $\mathcal{L}\gtrsim\!100/pb$
- all sorts of rare lepton fakes must be considered (mostly detector effects)

• BG mostly from WW

p^ℓ_T > 40 GeV

low production σ
 (only mediated by hypercharge)

$$m_{T2} \equiv \min_{\mathbf{p}_T^{\nu_2} - \mathbf{p}_T^{\nu_1}} \max\left[m_T(\bar{\ell}, \nu_2), m_T(\ell, \nu_1)\right]$$

- end-point feature in the region
 m_{T2} > m_W
- clean despite neutrinos, interesting for $\mathcal{L}\gtrsim 1/\textit{fb}$
- all sorts of rare lepton fakes must be considered (mostly detector effects)

13/11/09@ULB

- Detector effects are desperately needed to say s.t. meaningful
- While we talk Tevatron sets new limits

100/pb (the whole 2010 data-take?)

- 4j signal with di-jet resonaces with M ~ 400 GeV
- $\ell^+\ell^+\ell^- jj$ mET from heavy leptons with charge two $M \sim 300$ GeV
- $\ell^+\ell^+\ell^-\ell^-$ from scalar di-leptons of charge two $M \sim 150 \text{ GeV}$

roughly same discovery potential despite the very different rates

1/fb (at least 2012)

• $\ell_i \ell_j$ mET from scalar leptons $M \sim 150$ GeV

Conclusions: Just assuming quantum numbers a lot of collider physics!

- generic experimental difficulties for the gauge decays (though unlikely to be relevant)
- many "minimal" signatures have been studied
- rough discovery reach applicable to a yet-to-formulate BSM ... if any
- resonant signatures for the first year of data-taking: 4j, lllll, lllll mETjj
- many particles with degenerate signatures (yet another hint that LHC can't write a *L*agrangian)
- events of new physics without mET (how to disprove matter parity?)
- indirect effects can be important as well (change UV sensitive couplings like the

loop-generated ggH; change the running of SM couplings)

Introduction	Gauge decays	Signatures	LHC	Di-quarks	Di-leptons	Heavy leptons	Early birds	Conclusions

heavy flavor is always better

Not a theorem ... but close to

handswaiving proof for b quarks

- b quarks can be tagged (and mistagged ... of course)
- single-flavor background has to be less than many-flavor background
- b can be produced in top decay (typically subdominat)

t quark is more tricky

• BR($t \rightarrow b\ell$ mET) $\simeq 0.2$

trading a light quark for a top always gives back a jet, though softer because $p_b \sim p_t/2$ and in 20% of cases gives also a lepton.

- $\sigma(BG + 1t) < \sigma(BG + g)$ (plus you typically must produce $\overline{t}t$)
- $\sigma(BG + 1\ell) \sim \alpha_{ew} \cdot \sigma(BG)$
- for hadronic top could be more delicate to establish

other signatures

• $t\bar{t}W^+ \sim 3$ fb

• *t*t̄ need a hard lepton from a *b* (tail effect, computer-intensive)

 $\bullet\,$ as it is it can give a handful of events already with $\sim 200/\text{ pb}\,$

we focus on VV=ZZ or ZW (WW is well studied)

- *Z*4*j* ~ 10 pb
- *ZW2j* ~ 0.4 pb
- *t̄tjj* and 4*j*2*W* are eliminated by m(ℓ⁺, ℓ[−]) = m_Z

- $m(j,j) m_W | < 10 \text{ GeV}$
- $|m(\ell^+, \ell^-, j)/m(3j) 1| < 0.1$
- 6j could be feasible as well using the trick of $p_T/M \sim 1$ as seen for the di-jet resonances
- chances to detect exotic charges (4/3 or 5/3) in an high rate of signals with W

