Measurement of Ultra-high Energy Cosmic Rays - First Results from Telescope Array (TA) -

May 7, 2010 @ ULB

M. Fukushima, ICRR, Univ.Tokyo

The Telescope Array (TA) Collaboration

T. Abu-Zayyad¹, R. Aida², M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, T. Benno⁴, D.R. Bergman⁵, S.A. Blake¹, O. Brusova¹, R. Cady¹, B.G. Cheon⁶, J. Chiba⁷, M. Chikawa⁴, E.J. Cho⁶, L.S. Cho⁸, W.R. Cho⁸, F. Cohen⁹, K. Doura⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima^{9,22}, D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Hibino¹³, K. Hiyama⁹, K. Honda², G. Hughes⁵, T. Iguchi³, D. Ikeda⁹, K. Ikuta², S.J.J. Innemee⁵, N. Inoue¹⁴, T. Ishii², R. Ishimori³, D. Ivanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹², T. Kanbe², H. Kang¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana¹⁴, E. Kido⁹, B.G. Kim¹⁹, H.B. Kim⁶, J.H. Kim⁶, J.H. Kim²⁰, A. Kitsugi⁹, K. Kobayashi⁷, H. Koers²¹, Y. Kondo⁹, V. Kuzmin¹², Y.J. Kwon⁸, J.H. Lim¹⁶, S.I. Lim¹⁹, S. Machida³, K. Martens²², J. Martineau¹, T. Matsuda¹⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹, K. Miyata⁷, H. Miyauchi¹¹, Y. Murano³, T. Nakamura²³, S.W. Nam¹⁹, T. Nonaka⁹, S. Ogio¹¹, M. Ohnishi⁹, H. Ohoka⁹, T. Okuda¹¹, A. Oshima¹¹, S. Ozawa¹⁷, I.H. Park¹⁹, D. Rodriguez¹, S.Y. Roh²⁰, G. Rubtsov¹², D. Ryu²⁰, H. Sagawa⁹, N. Sakurai⁹, L.M. Scott⁵, P.D. Shah¹, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁶, J.D. Smith¹, P. Sokolsky¹, T.J. Sonley¹, R.W. Springer¹, B.T. Stokes⁵, S.R. Stratton⁵, S. Suzuki¹⁰, Y. Takahashi⁹, M. Takeda⁹, A. Taketa⁹, M. Takita⁹, Y. Tameda³, H. Tanaka¹¹, K. Tanaka²⁴, M. Tanaka¹⁰, J.R. Thomas¹, S.B. Thomas¹, G.B. Thomson⁵, P. Tinyakov^{12,21}, I. Tkachev¹², H. Tokuno⁹, T. Tomida², R. Torii⁹, S. Troitsky¹², Y. Tsunesada³, Y. Tsuyuguchi², Y. Uchihori²⁵, S. Udo¹³, H. Ukai², B. Van Klaveren¹, Y. Wada¹⁴, M. Wood¹, T. Yamakawa⁹, Y. Yamakawa⁹, H. Yamaoka¹⁰, J. Yang¹⁹, S. Yoshida¹⁸, H. Yoshii²⁶, Z. Zundel¹

~120 Scientists from Japan, US, Korea, Russia and Belgium ICRR/Tokyo, Tokyo Tech., Osaka-City, Univ. of Utah, Rutgers, INR/RAS, ULB & others

Middle Drum telescope station

Transfer of HiRes — 1 and adjustment

One of the first events of TA: 2005/07/12, 2:52 am, Utah.

top / bottom & left / right of camera view reversed.

FD is a Total Absorption Calorimetry for absolute energy measurement

Primary composition and Xmax

Example of FD Event

June 20, 08:18:21(UTC), trigger ID 0000169

TA Surface Detector (Plastic Scintillator)

Plastic Scintillator 3 m², 12 mm t WLSF readout, 2 layers overlaid

1 MIP photo-electron distribution

Lifted by helicopter ~510 kG

Air Shower Detection

$\Delta T \int_{\Delta X}^{2enith \sim arcsine (\Delta T / \Delta X)}$

090122-225422

.3

.8

longitude

2

Event "Side" View

Event Top View

X,Y = counter # number = MeV energy deposit (av U+D) ~ 2.5 MeV for vertical mu

090202-003358 TH~86⁰

Gnuplot

Event Reconstruction by SD

Geometry * by core location + arrival timing

Energy ∝ energy deposit on the ground ? estimate of zenith attenuation

Composition by shower front curvature + muon

Flat acceptance, uniform exposure
Abs. energy : by shower MC

Event Reconstruction by FD

Geometry (direction + distance) * Monocular: 1 FD by angular speed * Stereo: intersect of 2-3 FDs * Hybrid: + SD timing (+ core location)

Energy ∞ # of detected photons, ? atmospheric transparency etc..

Composition by Xmax (shower max.)

Variable acceptance (energy, angle, distance, weather...)
 & change of exposure (seasonal sky coverage)
 + Abs. energy : experimental

SD and FD of TA are independent. Each by itself is a complete detector.

Numerous cross checks possible.

(No Calib. & no detector monitor in this talk)

TA measures

Primary Composition: what is the UHECR ? Spectrum: dip and cutoff ? Source + Anisotropy: From where it is coming ? UHE γ and ν : Exotic origin ?

Today's talk covers analyses of

- Xmax by stereo FD (by Y.Tameda)
- Spectrum by FD/SD hybrid (by D.lkeda)
- UHE *γ* limit (by G.Rubtsov)
- [SD spectrum]
- [LSS association, Point sources etc.]
- [UHE ν search]

Greisen - Zatsepin - Kuzmin (GZK) Cutoff

 \rightarrow

Cosmic rays exceeding ~10²⁰ eV must have origins nearby

If particles are protons at $E > 10^{18}$ eV, we may be observing pair creation dip (uncle) and pion production (GZK) cutoff.

by Berezinsky Jun08

Xray picture

Optical picture

Cen A ~ 4 Mpc

Interacting Galaxies

Hubble Space Telescope • ACS/WFC • WFPC2

NASA, ESA, the Hubble Heritage (AURA/STScI)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

STScI-PRC08-16a

< SD Observation Status >

- operation in stable $\geq 95\%$ $\geq 16k$ hours
- wLAN interference in early stage
- thunder storms in summer
- maintenance access in autumn
- low temperature & snow in winter

< FD Observation Status >

• Full operation since Nov '07

• Long Ridge remote operation since May '09

(1) FD Stereo Analysis for Xmax

Nov. 2007 – Oct. 2009 BRM-LR Stereo Event

Event Selection

- Xmax within FoV
- Zenith Angle < 56°
- Shower Core in R=9.6km circle
- E > 10^{18.6}eV
- good χ^2

Check with MC expectation

Existing Xmax data

HiRes: stereo FD

Auger: FD/SD hybrid

Xmax by MC (Raw)

Fe QGSJET-II

Example of Stereo Event

SD

FD FOV

zenith	azimuth	core [km]
3.23°	145.9°	0.09, -6.10

Reconstruction

- 1) Core and Direction by Stereo Geometry
- 2) E and Xmax by Inverse MC

Accuracy @ 10^{19} eV Direction : < 1.6 deg shower core location : ± 180 m Energy : -5.4 ± 5.8 % Xmax : -9.7 ± 16 g/cm²

1.76×10¹⁹ eV

Making Simulated Events

Shower Simulation

- CORSIKA v6.9
- Hadronic Int. Model
 - QGSjet-II, QGSjet-01, SIBYLL
- Proton or Fe Nuclei
- Energy:
 - logE = 18.5-19, 19-19.5, 19.5-20
 - Power index : 3.1
- Zenith Angle : 0 60 deg
- thinning factor : 10⁻⁴
- Ecut: EM:100keV, hadron:100MeV
- Core: r < 10 km
- Each 500 events

Detector Simulation

- Atmosph. by nearby Radio Sonde
- Typical measured Mie attenuation by lidar (h=1.0km, λ = 29km)
- Fluorescence yield
 - Normalization by Kakimoto et al.,
 - Spectrum by FLASH

Psi angle (deg)

Rp (km)

Zenith angle (deg)

Comparison of reconstructed Xmax between data and MC

<Reconstructed Xmax> vs. E

Chi2 vs shift of dXmax

(2) Hybrid Analysis for Spectrum

- FD geom. reconst. with SD timing
- Energy determined by FD
- Acceptance determined by "SD"

elevation angle [deg

Geometrical reconstruction

r SD

Shower profile reconstruction

Xmax has to be observed
Energy > 10^{18.65}eV
Zenith angle < 45 degree

MC simulation

Resolution (Geometry)

Exposure

The aperture is calculated from MC simulation. Exposure: ~3*10¹⁵ m² sr s (>~10¹⁹eV)

Data/MC comparison - 1

Data/MC comparison - 2

Energy spectrum

(3) UHE Photon Search

Shower front curvature

deep shower maximum = curved front

Example of front curvature

Event reconstruction

- Joint fit of LDF and shower front profile
- 7-parameters:
 - X_{core}, y_{core} shower core location at the ground level
 - θ, φ zenith and azimuthal angles of primary arrival direction
 - S₈₀₀ normalization factor for LDF (corresponds to scintillation signal density at 800 meters)
 - t₀ arrival time for the shower core
 - a dimensionless Linsley's curvature parameter

 $t(r) = t_0 + t_{plane}(r) + a t_L(r)$ $t_L(r) = (r/39m)^{1.5} LDF(r, \theta)^{-0.5}$ $S(r) = S_{800} LDF(r, \theta), LDF(800m, \theta) = 1$

LDF(r) – modified AGASA function r – core distance in shower plane

Linsley curvature "a": data vs. photon MC

 $0^{\circ} - 30^{\circ}$

$$E_{\gamma} > 10^{19} \,\mathrm{eV}$$

data

photon MC, E^{-2} spectrum

Corsika with QGSJET-II

Larger curvature

Example of analysis of one event

 θ = 59.9°, E γ = 3.2 x 10¹⁹ eV, C = 0.26

C distribution: data vs photon MC

$$E_{\gamma} > 10^{19} \, \mathrm{eV}$$

data

photon MC, E^{-2} spectrum

C is distributed uniformly between 0 and 1 for photon events.

Photon Flux Limit Conclusion

- $E_{\gamma} > 10^{19} \text{ eV}$
- 45°<θ<60°
- C>0.5 – One event remain.
- Total exposure:
 - 158km² sr yr
- F_γ<3.3x10⁻² km⁻² sr⁻¹ yr⁻¹
 (95%CL) preliminary

SUMMARY

TA measures

Primary Composition: what is the UHECR? Spectrum: dip and cutoff ? Source + Anisotropy: From where it is coming? UHE γ and ν : Exotic origin ?

Today's talk covered

- Xmax by stereo FD ------
- Spectrum by FD/SD hybrid ----
- UHE *Y* limit -----
- [SD spectrum] • [LSS association, Point sources etc.]
- [UHE *v* search]

- ~ proton for E=10^{18.5} ~10^{19.3} eV
- ~ consistent with HiRes
- ~ NO Y E< 10¹⁹ eV
 - Coming soon