#### Interacting dark matter-dark energy

#### Laura Lopez Honorez

Université Libre de Bruxelles

based on

Dark Coupling: JCAP 0907:034 Dark Coupling and Gauge Invariance: JCAP11(2010)044 Coupled dark matter-dark energy in light of near Universe observations: JCAP 1009:029.

in collaboration with B. Gavela, D. Hernandez, O. Mena, S. Rigolin, L.Verde, R. Jimenez and B. Reid





#### Service de Physique Théorique

#### What is our Universe made of?

Several sources converges for 95% of unknown material

< □ > < 同 > < 回 > < 回 > < 回

#### What is our Universe made of?

#### Several sources converges for 95% of unknown material





• • • • • • • • • • • • • •

#### What is our Universe made of?

#### Several sources converges for 95% of unknown material





#### Universe content from WMAP7



• • • • • • • • • • • • • •



2

<ロト < 四ト < 三ト < 三ト

#### Introduction



イロト イポト イヨト イヨト

#### Introduction



< ロ > < 同 > < 三 > < 三 >



• • • • • • • • • • • • • •

#### Energy exchange - Background

• Evolution equations for a Interacting DM-DE System :

$$\dot{\rho}_{dm} + 3H\rho_{dm} = 0$$
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = 0$$

 $p_i = w_i \rho_i$ 

 $\Lambda$ CDM model  $w_{de} = -1$ 



#### Energy exchange - Background

• Evolution equations for a Interacting DM-DE System :

$$\dot{\rho}_{dm} + 3H\rho_{dm} = 0$$
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = 0$$

 $p_i = w_i \rho_i$ 

DE model  $w_{de} = -0.9$ 



# Energy exchange - Background Evolution equations for a Interacting DM-DE System :

$$\dot{\rho}_{dm} + 3H\rho_{dm} = Q$$
  
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = -Q$$

 $p_i = w_i \rho_i$ 

•  $Q < 0 \equiv DM$  decaying into DE

• for accel : w < -1/3 as the deceleration param is still :  $q = -\dot{\mathcal{H}}/\mathcal{H}^2 = 1/2(1+3w)\Omega_{de}$  DE-dm Coupled model



# Energy exchange - Background Evolution equations for a Interacting DM-DE System :

$$\dot{\rho}_{dm} + 3H\rho_{dm} = Q$$
  
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = -Q$$

 $p_i = w_i \rho_i$ 

- Q < 0 ≡ DM decaying into DE</li>
   for accel : w < -1/3 as the deceleration param is still : q = -H/H<sup>2</sup> = 1/2(1 + 3w)Ω<sub>de</sub>
- Hint of cosmological constraints : CMB data constrains *e.g.*  $\rho_{dm}(a_{rec})$

$$\rightsquigarrow \rho_{dm}(a_0)|_{Q<0} < \rho_{dm}(a_0)|_{Q=0}$$
  
more dark matter in the past



From the Background : Energy exchange...

• Analogy : decaying dark matter e.g.  $\chi_1 \rightarrow \chi_2$ 

$$\dot{n}_2 - 3Hn_2 = \Gamma_{12}n_1$$
  
 $\dot{n}_1 - 3Hn_1 = -\Gamma_{12}n_1$ 

From the Background : Energy exchange...

• Analogy : decaying dark matter e.g.  $\chi_1 \rightarrow \chi_2$ 

$$\dot{n}_2 - 3Hn_2 = \Gamma_{12}n_1$$
  
 $\dot{n}_1 - 3Hn_1 = -\Gamma_{12}n$ 

• The DM-DE Interaction  $\rho_{dm} \leftrightarrow \rho_{de}$ 

$$\dot{\rho}_{dm} + 3H\rho_{dm} = Q$$
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = -Q$$

| Laura Lo | pez Honore: | z (ULB) |
|----------|-------------|---------|
|----------|-------------|---------|

From the Background : Energy exchange...

• Analogy : decaying dark matter e.g.  $\chi_1 \rightarrow \chi_2$ 

$$\dot{n}_2 - 3Hn_2 = \Gamma_{12}n_1$$
  
 $\dot{n}_1 - 3Hn_1 = -\Gamma_{12}n_2$ 

• The DM-DE Interaction  $\rho_{dm} \leftrightarrow \rho_{de}$ 

$$\dot{\rho}_{dm} + 3H\rho_{dm} = \Gamma \rho_{dark}$$
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = -\Gamma \rho_{dark}$$

- Interaction rate :  $\Gamma$  can be taken  $\propto H, H_0, \phi$
- Energy density involved  $\rho_{dark} = \rho_{dm}$  Class I, or  $\rho_{dark} = \rho_{de}$  Class II

< ロ > < 同 > < 三 > < 三 >

From the Background : Energy exchange...

• Analogy : decaying dark matter e.g.  $\chi_1 \rightarrow \chi_2$ 

$$\dot{n}_2 - 3Hn_2 = \Gamma_{12}n_1$$
  
 $\dot{n}_1 - 3Hn_1 = -\Gamma_{12}n$ 

• The DM-DE Interaction  $\rho_{dm} \leftrightarrow \rho_{de}$ 

$$\dot{\rho}_{dm} + 3H\rho_{dm} = \Gamma \rho_{dark}$$
$$\dot{\rho}_{de} + 3H\rho_{de}(1+w) = -\Gamma \rho_{dark}$$

- Interaction rate :  $\Gamma$  can be taken  $\propto H, H_0, \dot{\phi}$
- Energy density involved  $\rho_{dark} = \rho_{dm}$  Class I, or  $\rho_{dark} = \rho_{de}$  Class II

... Up to the perturbations level : What would be the evolution of the density and velocity perturbations ?

Laura Lopez Honorez (ULB)

• Geometry : Newtonian potential

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^{2}\left[-(1+2\Psi)d\tau^{2} + (1+2\Phi)dx^{i}dx^{j}\right]$ 

- Geometry : Newtonian potential  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^2 \left[ -(1+2\Psi)d\tau^2 + (1+2\Phi)dx^i dx^j \right]$
- Matter-Energy content : density and velocity perturbations  $T^{\mu}_{\nu} = \rho(1 + \delta) T^{0}_{i} = (\rho + p)v_{i}, T^{i}_{j} = p + \delta p$

- Geometry : Newtonian potential  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^2 \left[ -(1+2\Psi)d\tau^2 + (1+2\Phi)dx^i dx^j \right]$
- Matter-Energy content : density and velocity perturbations  $T^{\mu}_{\nu} = \rho(1 + \delta) T^0_i = (\rho + p)v_i, T^i_j = p + \delta p$
- Matter-Energy content are **Related** to each other

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 and  $\nabla_{\mu} T^{\mu}_{(tot)\nu} = 0$ 

- Geometry : Newtonian potential  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^2 \left[ -(1+2\Psi)d\tau^2 + (1+2\Phi)dx^i dx^j \right]$
- Matter-Energy content : density and velocity perturbations  $T^{\mu}_{\nu} = \rho(1 + \delta) T^{0}_{i} = (\rho + p)v_{i}, T^{i}_{j} = p + \delta p$
- Matter-Energy content are **Related** to each other

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 and  $\nabla_{\mu} T^{\mu}_{(tot)\nu} = 0$ 

• For a DM assuming  $w_{dm} = 0 = \delta p_{dm} : \nabla_{\mu} T^{\mu}_{(dm)\nu} = 0$ :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi})$$
  
 $\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi$ 

- Geometry : Newtonian potential  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^2 \left[ -(1+2\Psi)d\tau^2 + (1+2\Phi)dx^i dx^j \right]$
- Matter-Energy content : density and velocity perturbations  $T^{\mu}_{\nu} = \rho(1 + \delta) T^{0}_{i} = (\rho + p)v_{i}, T^{i}_{j} = p + \delta p$
- Matter-Energy content are **Related** to each other

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 and  $\nabla_{\mu} T^{\mu}_{(tot)\nu} = 0$ 

• For a DM assuming  $w_{dm} = 0 = \delta p_{dm} : \nabla_{\mu} T^{\mu}_{(dm)\nu} = Q_{\nu}$ :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ v_Q - v_{dm} \right] ,$$

- Geometry : Newtonian potential  $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = a^2 \left[ -(1+2\Psi)d\tau^2 + (1+2\Phi)dx^i dx^j \right]$
- Matter-Energy content : density and velocity perturbations  $T^{\mu}_{\nu} = \rho(1 + \delta) T^{0}_{i} = (\rho + p)v_{i}, T^{i}_{j} = p + \delta p$
- Matter-Energy content are **Related** to each other

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 and  $\nabla_{\mu} T^{\mu}_{(tot)\nu} = 0$ 

• For a DM assuming  $w_{dm} = 0 = \delta p_{dm} : \nabla_{\mu} T^{\mu}_{(dm)\nu} = Q_{\nu}$ :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ v_Q - v_{dm} \right] ,$$

• Momentum exchange :  $Q_{\nu} = Q u_{\nu}^{(dm)} / a \rightsquigarrow v_Q = v_{dm}$  DM vel

$$Q_{\nu} = Q u_{\nu}^{(de)} / a \rightsquigarrow v_{Q} = v_{de} \underset{P}{\text{DE vel}} \underset{P}{\text{DE vel}}$$

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 6 / 32



#### Tracking instability in the Dark Energy sector



Laura Lopez Honorez (ULB)

Interacting DM-DE

$$\delta_i'' = A_i \frac{\delta_i}{a^2} + B_i \frac{\delta_i'}{a} + \mathcal{F}(\rho_j, \delta_j, \delta_j'; j \neq i)$$

イロト イポト イヨト イ



< 口 > < 同



 $\delta_{de}^{\prime\prime}$  gets contributions from :

$$\delta P_{de} = \hat{c}_{sde}^2 \delta \rho_{de} - (\hat{c}_{sde}^2 - c_{ade}^2) 3(1+w) (1+d) \frac{\theta_{de}}{k^2} \mathcal{H} \rho_{de}$$
  
where  $\hat{c}_{sde}^2 = \delta P_{de} / \delta \rho_{de}$  and  $c_{ade}^2 = \dot{P}_{de} / \dot{\rho}_{de}$   
and  $\mathbf{d} \equiv \frac{Q}{3\mathcal{H} \rho_{de}(1+w)}$  is the DOOM factor

Laura Lopez Honorez (ULB)



 $\delta_{de}^{\prime\prime}$  gets contributions from :

$$\delta P_{de} = \hat{c}_{sde}^2 \delta \rho_{de} - (\hat{c}_{sde}^2 - c_{ade}^2) 3(1+w) (1+d) \frac{\theta_{de}}{k^2} \mathcal{H} \rho_{de}$$
  
where  $\hat{c}_{sde}^2 = \delta P_{de} / \delta \rho_{de}$  and  $c_{ade}^2 = \dot{P}_{de} / \dot{\rho}_{de}$   
and  $\mathbf{d} \equiv \frac{Q}{3\mathcal{H} \rho_{de}(1+w)}$  is the DOOM factor

In strongly coupled regime, ( $|\mathbf{d}| > 1$  ie  $\delta P_{de}$  is Q dominated) instabilities in DE perturbations can arise from the  $\delta P_{de}$  sector valivilita '08, He '09, Jackson '09

Indeed at early time and large scale  $A_{de} \& B_{de} \propto \mathbf{d}$  when  $w = \operatorname{cst} \\ \sim \mathbf{d} > 1$  Instability !! Gavela '09

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 8 / 32

 $Q \propto 
ho_{de}$  : stable for w < -1 and  $w ext{ cst}$  and Q < 0

 $Q_{\nu} = \xi \mathcal{H} \rho_{de} u_{de}^{\nu}$  and  $= \xi \mathcal{H} \rho_{de} u_{dm}^{\nu}$  with  $\xi < 0$  DEvel/DMvel ClassII  $Q^{\nu} \propto u_{de}^{\nu}, \propto u_{dm}^{\nu}$  same background, fith force present or not on DM

He '09, Gavela '09, Jackson '09

 $Q \propto \rho_{de}$  : stable for w < -1 and w cst and Q < 0

 $Q_{\nu} = \xi \mathcal{H} \rho_{de} u_{de}^{\nu}$  and  $= \xi \mathcal{H} \rho_{de} u_{dm}^{\nu}$  with  $\xi < 0$  DEvel/DMvel ClassII  $Q^{\nu} \propto u_{de}^{\nu}, \propto u_{dm}^{\nu}$  same background, fith force present or not on DM He '09. Gavela '09. Jackson '09

 $Q \propto \rho_{dm}$ : to be stable need w = w(a)

 $Q \propto 
ho_{de}$  : stable for w < -1 and w cst and Q < 0

 $Q_{\nu} = \xi \mathcal{H} \rho_{de} u_{de}^{\nu}$  and  $= \xi \mathcal{H} \rho_{de} u_{dm}^{\nu}$  with  $\xi < 0$  DEvel/DMvel ClassII  $Q^{\nu} \propto u_{de}^{\nu}, \propto u_{dm}^{\nu}$  same background, fith force present or not on DM He '09. Gavela '09. Jackson '09

 $Q \propto \rho_{dm}$ : to be stable need w = w(a)

• coupled quintessence well studied in literature Damour '90, Wetterich '95, Amendola '00,...  $Q^{\nu} \propto \alpha \rho_{dm} \nabla_{\nu} \phi / M_p$  DEvel ClassI from WMAP, SDSS, HST :  $\alpha < 0.08$  Bean '08

・ロト ・ 四ト ・ ヨト ・ ヨト

 $Q \propto 
ho_{de}$  : stable for w < -1 and w cst and Q < 0

 $Q_{\nu} = \xi \mathcal{H} \rho_{de} u_{de}^{\nu}$  and  $= \xi \mathcal{H} \rho_{de} u_{dm}^{\nu}$  with  $\xi < 0$  DEvel/DMvel ClassII  $Q^{\nu} \propto u_{de}^{\nu}, \propto u_{dm}^{\nu}$  same background, fith force present or not on DM He '09, Gavela '09, Jackson '09

 $Q \propto \rho_{dm}$ : to be stable need w = w(a)

• coupled quintessence well studied in literature Damour '90, Wetterich '95, Amendola '00,...  $Q^{\nu} \propto \alpha \rho_{dm} \nabla_{\nu} \phi / M_p$  DEvel ClassI from WMAP, SDSS, HST :  $\alpha < 0.08$  Bean '08

• Recent studies with  $\Sigma, w_0, w_e = \text{cst Valviita '09, Majerotto'09}$ 

 $Q^{\nu} = -a\Gamma\rho_{dm}u^{\mu}_{dm} \text{ and } w = w_0a + w_e(1-a),$ 

DMvel ClassI



# Constraints from data : In the light of the Dark Matter sector





イロト イポト イヨト イヨト

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 10 / 32

#### $\delta_{dm}^{\prime\prime}$ growth equation - late time - small scales

leads when A,B negligible 👞



• In the standard cosmology :

 $A_{dm}^{\text{SC}} > 0 \rightsquigarrow$  exponential growth  $B_{dm}^{\text{SC}} < 0 \rightsquigarrow$  damping by Hubble friction

 $\rightsquigarrow$  polynomial rise of  $\delta_{dm}$ 

#### $\delta_{dm}^{\prime\prime}$ growth equation - late time - small scales

leads when A,B negligible 👞



• In the standard cosmology :

 $A_{dm}^{SC} > 0 \rightsquigarrow$  exponential growth  $B_{dm}^{SC} < 0 \rightsquigarrow$  damping by Hubble friction

 $\rightsquigarrow$  polynomial rise of  $\delta_{dm}$ 

• In coupled models with :

with negative Q < 0

$$\rightsquigarrow A_{dm}(Q) > A_{dm}^{\mathrm{SC}} \& B_{dm}(Q) < B_{dm}^{\mathrm{SM}}$$

 $\rightsquigarrow$  larger growth of  $\delta_{dm}$ 

# $\delta_{dm}^{\prime\prime}$ growth equation - late time - small scales





• In the standard cosmology :

 $A_{dm}^{SC} > 0 \rightsquigarrow$  exponential growth  $B_{dm}^{SC} < 0 \rightsquigarrow$  damping by Hubble friction

 $\rightsquigarrow$  polynomial rise of  $\delta_{dm}$ 

• In coupled models with :

with negative Q < 0

$$\rightsquigarrow A_{dm}(Q) > A_{dm}^{\rm SC} \& B_{dm}(Q) < B_{dm}^{\rm SM}$$

 $\rightsquigarrow$  larger growth of  $\delta_{dm}$ 



#### Constraints and Degeneracies : Current data


イロト イポト イヨト イヨト

э



#### LSS data ~> stringent constraint

| Laura Lo | pez Hono | orez (ULB) |  |
|----------|----------|------------|--|
|----------|----------|------------|--|

December 1 2010 13 / 32



#### LSS data ~> stringent constraint

| Laura Lopez Honorez | (ULB) |
|---------------------|-------|
|---------------------|-------|

Interacting DM-DE

December 1 2010 13 / 32



#### LSS data ~> stringent constraint

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 13 / 32

### $\xi - m_{\nu}$ degeneracy

$$f_{\nu} = \frac{\Omega_{\nu}^{(0)} h^2}{\Omega_{dm}^{(0)} h^2} = \frac{\sum m_{\nu}}{93.2 \text{eV}} \cdot \frac{1}{\Omega_{dm}^{(0)} h^2}$$

Non relativistic neutrinos suppress the growth of  $\delta_{dm}$  at small scales

For  $f_{\nu} \neq 0$  the power spectrum is reduced with respect to  $f_{\nu} = 0$ .

$$Q_{\nu} = \xi \mathcal{H} \rho_{de} u^{\nu}_{dm}$$
 Gavela '09



### $\xi - m_{\nu}$ degeneracy

$$Q_{\nu} = \xi \mathcal{H} \rho_{de} u^{
u}_{dm}$$
 Gavela '09

$$f_{\nu} = \frac{\Omega_{\nu}^{(0)} h^2}{\Omega_{dm}^{(0)} h^2} = \frac{\sum m_{\nu}}{93.2 \text{eV}} \cdot \frac{1}{\Omega_{dm}^{(0)} h^2}$$

Non relativistic neutrinos suppress the growth of  $\delta_{dm}$  at small scales

For  $f_{\nu} \neq 0$  the power spectrum is reduced with respect to  $f_{\nu} = 0$ .



 $\rightsquigarrow$  Non relativistic neutrino effect on P(k) can be compensated by a DM-DE interaction

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 14 / 32

611

1.

## $\xi - m_{\nu}$ degeneracy

$$f_{\nu} = \frac{\Omega_{\nu}^{(0)}h^{2}}{\Omega_{dm}^{(0)}h^{2}} = \frac{\sum m_{\nu}}{93.2\text{eV}} \cdot \frac{1}{\Omega_{dm}^{(0)}h^{2}}$$
Non relativistic neutrinos suppress  
the growth of  $\delta_{dm}$  at small scales  
For  $f_{\nu} \neq 0$  the power spectrum  
is reduced with respect to  $f_{\nu} = 0$ .

0

#### $\sim$ Non relativistic neutrino effect on P(k) can be compensated by a DM-DE interaction

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 14 / 32

## $\xi - m_{\nu}$ degeneracy

$$f_{\nu} = \frac{\Omega_{\nu}^{(0)}h^2}{\Omega_{dm}^{(0)}h^2} = \frac{\sum m_{\nu}}{93.2\text{eV}} \cdot \frac{1}{\Omega_{dm}^{(0)}h^2}$$

Non relativistic neutrinos suppress the growth of  $\delta_{dm}$  at small scales

For  $f_{\nu} \neq 0$  the power spectrum is reduced with respect to  $f_{\nu} = 0$ .



 $\sim$  Non relativistic neutrino effect on P(k) can be compensated by a DM-DE interaction

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 14 / 32

# Constraints from near universe observation data Peculiar velocities

Coupled dark matter-dark energy in light of near Universe observations: JCAP 1009:029.

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ v_Q - v_{dm} \right] ,$$

3

イロン イロン イヨン イヨン

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ v_Q - v_{dm} \right] ,$$

3

イロン イロン イヨン イヨン

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ v_Q - v_{dm} \right] ,$$

DMvel class I  $\propto \rho_{dm} u_{dm}^{\nu}$  Cont.  $\sqrt{}$  Euler  $\sqrt{}$  only bg change

イロト イポト イヨト イヨト

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} \left[ \delta_Q - \delta_{dm} + \Psi \right]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} \left[ \dot{v}_Q - v_{dm} \right] ,$$

DMvel class I  $\propto \rho_{dm} u_{dm}^{\nu}$  Cont.  $\sqrt{}$  Euler  $\sqrt{}$  only bg change DEvel class I  $\propto \rho_{dm} u_{de}^{\nu}$  Cont.  $\sqrt{}$  Euler X viol WEP !!!

・ロト ・ 四ト ・ ヨト ・ ヨト

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} [\delta_Q - \delta_{dm} + \Psi]$$
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} [v_Q - v_{dm}] ,$$

DMvel class I  $\propto \rho_{dm} u_{dm}^{\nu}$  Cont.  $\sqrt{}$  Euler  $\sqrt{}$  only bg change DEvel class I  $\propto \rho_{dm} u_{de}^{\nu}$  Cont.  $\sqrt{}$  Euler X viol WEP !!! DMvel class II  $\propto \rho_{de} u_{dm}^{\nu}$  Cont. X Euler  $\sqrt{}$ 

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} [\delta_{Q} - \delta_{dm} + \Psi]$$
  
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} [v_{Q} - v_{dm}] ,$$

| DMvel class I  | $\propto  ho_{dm} u^{ u}_{dm}$   | Cont. 🗸  | Euler 🗸  | only bg change |
|----------------|----------------------------------|----------|----------|----------------|
| DEvel class I  | $\propto  ho_{dm} u_{de}^{\nu}$  | Cont. $$ | Euler X  | viol WEP ! ! ! |
| DMvel class II | $\propto  ho_{de} u^{ u}_{dm}$   | Cont. X  | Euler $$ |                |
| DEvel class II | $\propto \rho_{de} u^{\nu}_{de}$ | Cont. X  | Euler X  | viol WEP !!    |
|                |                                  |          |          |                |

< □ > < 同 > < 回 > < 回 > < 回

Low Redshifts, small scales  $(k \gg \mathcal{H})$ , Newtonian limit :

$$\dot{\delta}_{dm} = -(kv_{dm} - \dot{\Phi}) + \frac{Q}{\bar{\rho}_{dm}} [\delta_{Q} - \delta_{dm} + \Psi]$$
  
$$\dot{v}_{dm} = -\mathcal{H}v_{dm} + k\Psi + \frac{Q}{\bar{\rho}_{dm}} [v_{Q} - v_{dm}] ,$$

| DMvel class I  | $\propto  ho_{dm} u_{dm}^{\nu}$  | Cont. $$ | Euler 🗸  | only bg change |
|----------------|----------------------------------|----------|----------|----------------|
| DEvel class I  | $\propto  ho_{dm} u_{de}^{\nu}$  | Cont. $$ | Euler X  | viol WEP ! ! ! |
| DMvel class II | $\propto  ho_{de} u^{ u}_{dm}$   | Cont. X  | Euler $$ |                |
| DEvel class II | $\propto \rho_{de} u^{\nu}_{de}$ | Cont. X  | Euler X  | viol WEP!!     |

Linear growth function :  $v = f(\mathcal{H}/k) \delta$ 

- Uncoupled and Class I :  $f = d \ln \delta / d \ln a$
- Class II models, 2d contrib  $f = d \ln \delta / d \ln a + \frac{Q}{Q} / (\rho_{dm} \mathcal{H})$

#### Bulk flows : large scale galaxy motion

Watkins '09 : anomalously large averaged velocities @  $100h^{-1}$  Mpc scales  $\langle u^2 \rangle^{1/2} = 407 \pm 81$  km/s while  $\langle u^2_{\Lambda CDM} \rangle^{1/2} \sim 200$  km/s

$$\langle u^2 \rangle = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, k^2 P_\nu(k) |\tilde{W}(k)|^2 = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, \mathcal{H}^2 f^2 P_\delta(k) \, |\tilde{W}(k)|^2$$

#### Bulk flows : large scale galaxy motion

Watkins '09 : anomalously large averaged velocities @  $100h^{-1}$  Mpc scales  $\langle u^2 \rangle^{1/2} = 407 \pm 81$  km/s while  $\langle u^2_{\Lambda CDM} \rangle^{1/2} \sim 200$  km/s

$$\langle u^2 \rangle = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, k^2 P_\nu(k) |\tilde{W}(k)|^2 = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, \mathcal{H}^2 f^2 P_\delta(k) \, |\tilde{W}(k)|^2$$

 $\sim$  seems to favour models with larger growth than  $\Lambda$ CDM ?! Ayaita '09

#### Bulk flows : large scale galaxy motion

Watkins '09 : anomalously large averaged velocities @  $100h^{-1}$  Mpc scales  $\langle u^2 \rangle^{1/2} = 407 \pm 81$  km/s while  $\langle u^2_{\Lambda CDM} \rangle^{1/2} \sim 200$  km/s

$$\langle u^2 \rangle = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, k^2 P_\nu(k) |\tilde{W}(k)|^2 = \frac{1}{2\pi^2} \int_0^\infty \mathrm{d}k \, \mathcal{H}^2 f^2 P_\delta(k) \, |\tilde{W}(k)|^2$$

 $\sim$  seems to favour models with larger growth than ACDM ? ! Ayaita '09



Imposing agreement with WMAP5  $d_A(z_{rec})$ 

- DMvel can't account for large  $\langle u^2 \rangle^{1/2}$
- DEvel suffer from WEPV !!! → bulk flows are constraining ξ < -0.35</li>

#### Peculiar velocities and Redshift space distortions



#### Perturbations and instability

### Peculiar velocities and Redshift space distortions



Galaxy surveys offer a measure of  $f\sigma_8$  !! Applied to coupled cosmologies :

### Peculiar velocities and Redshift space distortions



 $z_{obs} = z_{true} + \vec{v}_{pec} \cdot \hat{x}$ Neglecting  $v_{pec} \rightsquigarrow$  distortion in redshift space

Redshift space distortions seen in galaxy surveys carry an imprint of the rate of growth of LSS

(Kaiser 1987, Song & Percival '10)

Galaxy surveys offer a measure of  $f\sigma_8$  !! Applied to coupled cosmologies :



for DMvel & DEvel Class II  $Q = \xi \mathcal{H} \rho_{de}$  with  $\xi = -0.5$  and DMvel Class I  $Q = -a\Gamma \rho_{dm}$  and  $\Gamma = -0.3H_0$  (best fit point Valiviita '09)

#### Violation of the Weak Equivalence Principle -DMvel test

Kesden & Kamionkowsi : Extra force between DM can lead to an asymmetry in the leading compared to the trailing tidal stream of a DM dominated satellite orbiting in the halo of a much larger host galaxy.

#### Violation of the Weak Equivalence Principle -DMvel test

Kesden & Kamionkowsi : Extra force between DM can lead to an asymmetry in the leading compared to the trailing tidal stream of a DM dominated satellite orbiting in the halo of a much larger host galaxy.

From 2MASS and SDSS surveys : Sgr Dwarf galaxy orbiting in the MW has roughly equal streams  $\rightsquigarrow |a_b - a_{dm}/a_b| < 0.1$  K&K '06.

#### Perturbations and instability

#### Violation of the Weak Equivalence Principle -DMvel test

Kesden & Kamionkowsi : Extra force between DM can lead to an asymmetry in the leading compared to the trailing tidal stream of a DM dominated satellite orbiting in the halo of a much larger host galaxy.

From 2MASS and SDSS surveys : Sgr Dwarf galaxy orbiting in the MW has roughly equal streams  $\rightsquigarrow |a_b - a_{dm}/a_b| < 0.1$  K&K '06.



Interactions between DM and DE can be present Neglecting them can lead to a misinterpretation of observational data

- Carrefull choice of the  $Q_{\nu}$  parametrization in order to avoid Instabilities
- Large values of the coupling are still allowed by LSS and CMB data
- Degeneracies  $Q \Omega_{dm}$  and  $Q m_{\nu}$  shows up
- Velocity constraints put stringent bounds on Q in DEvel models

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# This is the End Thank you for your attention ! !

# Backup

2

<ロト < 四ト < 三ト < 三ト

#### Values of $\Omega_{dm}$ that fit CMB

We use the values of  $\Omega_{dm}$  giving rize to the  $d_A(z_{rec})$  in agreement with WMAP5 :

For e.g.  $Q = \xi \mathcal{H} \rho_{de}$ 



Background dependent !! quite independent of *w* 

## Viable parameter space in $\xi - w$ plane

In the instability-free region  $\xi < 0$  and w > -1:



 $\rightsquigarrow$  Present data are unable to set strong constraints on  $\xi$  - w, and large values for both parameters, near -0.5, are easily allowed

#### Origin of instabilities in coupled models - $\delta P$ sector

÷

• Adiabatic processes :

$$\delta P_{de} \to c_{a\,de}^2 \delta \rho_{de}$$

$$c_{a\,de}^2 = \frac{P_{de}}{\dot{\rho}_{de}}$$
 which for  $w = cst, c_{a\,de}^2 = w < 0$ 

< □ > < 同 > < 回 > < 回 > < 回

#### Origin of instabilities in coupled models - $\delta P$ sector

• Adiabatic processes :

$$\delta P_{de} \to c_{a\,de}^2 \delta \rho_{de}$$



 $\sim$  Instability as  $c_{a \, de}^2 < 0$ , pressure no more counteract gravity

 $\rightsquigarrow$  Exponential growth from the A-term contribution

see e.g. Bean, Flanagan and Trodden '07 AND slow-roll suppression see Corasaniti '09

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 25 / 32

#### Origin of instabilities in coupled models - $\delta P$ sector

• Non adiabatic processes :

$$\delta P_I \neq c_{aI}^2 \delta \rho_I,$$

In any frame for coupled DE-DM :

$$\delta P_{de} = \hat{c}_{sde}^2 \delta \rho_{de} - (\hat{c}_{sde}^2 - c_{ade}^2) \dot{\rho}_{de} \frac{\theta_{de}}{k^2} \quad \text{where} \quad \hat{c}_{sde}^2 = \frac{\delta P_{de}}{\delta \rho_{de}} \bigg|_{DErf}$$

#### Origin of instabilities in coupled models - $\delta P$ sector

• Non adiabatic processes :

$$\delta P_I \neq c_{aI}^2 \delta \rho_I,$$

In any frame for coupled DE-DM :

$$\delta P_{de} = \hat{c}_{sde}^2 \delta \rho_{de} - (\hat{c}_{sde}^2 - c_{ade}^2) 3(1+w) (1+\mathbf{d}) \frac{\theta_{de}}{k^2} \mathcal{H} \rho_{de}$$

where we define the DOOM FACTOR :  $\mathbf{d} \equiv \frac{Q}{3\mathcal{H}\rho_{de}(1+w)}$ 

Laura Lopez Honorez (ULB)

### Origin of instabilities in coupled models - $\delta P$ sector

• Non adiabatic processes :

$$\delta P_I \neq c_{aI}^2 \delta \rho_I,$$

In any frame for coupled DE-DM :

$$\delta P_{de} = \hat{c}_{sde}^2 \delta \rho_{de} - (\hat{c}_{sde}^2 - c_{ade}^2) 3(1+w) (1+\mathbf{d}) \frac{\theta_{de}}{k^2} \mathcal{H} \rho_{de}$$

where we define the DOOM FACTOR :  $\mathbf{d} \equiv \frac{Q}{3\mathcal{H}\rho_{de}(1+w)}$ 

#### $|\mathbf{d}| > 1 \rightsquigarrow$ strongly growing non-adiabatic mode at early time-large scales (*i.e.* $k \ll \mathcal{H}$ ) $\rightsquigarrow$ drive NON-ADIABATIC instabilities

see also Valiviita et all '08, He et all '08 and Jackson et all '09

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 26 / 32

0

• • • • • • • • • • • • •

### Analytical treatment of Perturbations

$$Q_{\nu} = Q u_{\nu}^{(dm)}$$
 with  $Q = \xi H \rho_{de}$ 

no fith force effects and  $\xi < 0$  with w > -1 to avoid instabilities

э
### Analytical treatment of Perturbations

$$Q_{\nu} = Q u_{\nu}^{(dm)}$$
 with  $Q = \xi H \rho_{de}$ 

no fith force effects and  $\xi < 0$  with w > -1 to avoid instabilities

• Gauge invariant formalism  $\rightsquigarrow \delta H$  must be included in  $\Delta_Q$ 

### Analytical treatment of Perturbations

$$Q_{\nu} = Q u_{\nu}^{(dm)}$$
 with  $Q = \xi H \rho_{de}$ 

no fith force effects and  $\xi < 0$  with w > -1 to avoid instabilities

- Gauge invariant formalism  $\rightsquigarrow \delta H$  must be included in  $\Delta_Q$
- Derive initial conditions

Imposing adiabatic initial conditions  $S_{ab} \equiv \frac{\Delta_a^0}{\dot{\rho}_a/\rho_a} - \frac{\Delta_b^0}{\dot{\rho}_b/\rho_b} = 0$ for  $dm, b, \gamma, \nu$ , automatically implies :

$$\rightsquigarrow \Delta_{de}^{0} = \frac{3}{4} \left( 1 + w + \frac{\xi}{3} \right) \Delta_{\gamma}^{0}$$

Adiabatic initial conditions for dark energy (depend on  $\xi ! !$ )

for uncoupled Doran'03, for coupled also Majerotto'10

Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 27 / 32

### What would be $\tilde{w}(z)$ reconstructed

...from H(z) data assuming no coupling and dynamical DE :

$$R_H(z) = \frac{H^2(z)}{H_0^2} = \Omega_{dm}^{(0)} (1+z)^3 + \Omega_{de}^{(0)} \exp\left[3\int_0^z dz' \frac{1+\tilde{w}(z')}{1+z'}\right]$$
$$\Rightarrow \tilde{w}(z) = \frac{1}{3} \frac{R'_H(1+z) - 3R_H}{R_H - \Omega_{dm}^{(0)}(1+z)^3}.$$

However in presence of dark couplings :

$$\boldsymbol{R}_{H}(z) = f(\boldsymbol{w}, \boldsymbol{Q}, \Omega_{dm}^{(0)}, \Omega_{de}^{(0)})$$

• • • • • • • • • • • • •

For  $Q = \xi H \rho_{dm}$ 

< 口 > < 同

# Reconstructing $\tilde{w}(z)$ as a function of w and $\xi$

For  $Q = \xi H \rho_{de}$ 



Similar behaviour in  $f(\mathbf{R})$  cosmologies see *e.g.* Amendola & Tsujikawa '07

Laura Lopez Honorez (ULB)

December 1 2010 29 / 32

### Future Constraints : from CMB lensing Martinelli'10



# $Q = \xi H \rho_{de} case$



Laura Lopez Honorez (ULB)

Interacting DM-DE

December 1 2010 32 / 32

◆□▶ ◆圖▶ ◆理▶ ◆理▶ 三世