

The future of very high energy gamma ray astronomy From HESS to CTA

Outline

- Status of VHE γ ray astronomy
- Recent results on DM search with HESS
- The CTA concept
- Dark matter, from HESS to CTA
- The CTA consortium and design study

Ground-based VHE gamma-ray instruments

Imaging atmospheric Cherenkov telescopes

W

brief flash ~3 ns

– steroscopy:

improved gamma ray reconstruction muon background rejection

High Energy Stereoscopic System

located in Namibia, latitude=-23°, altitude=1800 m 4 telescopes, 107 m² each cameras 960 PMT FOV= 5° trigger threshold=100GeV installed: january 2004

installation of 5th telescope in 2011 mirror: 600m², 2048 PMT, FOV=3.5°, trigger threshold=20 GeV

Major Atmospheric Gamma-ray Imaging Cherenkov

located in La Palma (Canaries Islands), latitude=+29°, altitude=2225 m

mirror: 234 m² camera 534 PMT FOV=3.5°

trigger threshold=60 GeV installed late 2004 installation 2nd telescope in 2009 mirror 234m², 1099 PMT

Very Energetic Radiation Imaging Telescope Array System

origin: Whipple collaboration (10 m, late 80s) located in Arizona, latitude=+32°, altitude=1275 m

4 telescopes, 106 m² each cameras 499 PMT FOV=3.5° trigger threshold=100 GeV installed in april 2007

Status of VHE gamma-ray astronomy

Friday, December 3, 2010

The H.E.S.S. survey of the Galactic plane

Friday, December 3, 2010

Indirect dark matter search strategy

WIMP annihilation flux into γ rays observed in solid angle $\Delta \Omega$:

$$\frac{d\phi_{\gamma}}{dE} \propto \left[\frac{dN_{\gamma}}{dE} \left(\frac{\langle \sigma v \rangle}{3 \ 10^{-26} \ cm^3 \ / \ s} \left(\frac{1 \ \text{TeV}}{M_{\chi}}\right)^2\right] \left[\bar{J}(\Delta \Omega) \Delta \Omega\right] \qquad \Delta \Omega_{\text{HESS}} = 10^{-5} \ \text{sr}$$

particle model

```
f . darle hala madal
```

- $dN\gamma/dE$ given by selected particle models:
 - neutralinos (MSSM)
 - U Extra Dimensions (Servant, Tait 2003) boson B
- Astrophysical factor: $f^{AP} = \overline{J}\Delta\Omega \propto \int_{l.o.s} \rho_{DM}^{2} dl$ \Rightarrow dense targets **Observed by HESS**: Galactic Center nearby dwarf galaxies, globular clusters center of galaxy clusters (M87..) searches for clumps, IMBH

Overview of HESS DM searches

- Galactic Center

— limits on $<\sigma$ v> at the level of 10⁻²⁴ cm³ s⁻¹

- F.Aharonian et al., Phys.Rev. Letters, 97, 221102 (2006)

— IMBH

strong constraints provided these objects exist

- F.Aharonian et al, Phys.Rev D 78, 072008 (2008)

High energy electrons (ATIC/PAMELA signal)

- F.Aharonian et al, A & A, 508, 561 (2009)

<u>— Dwarf galaxies</u>

Dwarf spheroidal galaxies

Friday, December 3, 2010

Sgr dwarf: exclusion plots

- <o v> ≈ 5 10 cm s (MSSM, NFW profile)
- F.Aharonian et al, Astropart.Physics 29,55(2008) F. Aharonian et al, Astropart. Physics 33,274 (2010)

Canis Major: exclusion plots

(MSSM)

CTA

- overdensity discovered 2004, nearby (7 kpc)

CIII

- status as a dwarf galaxy disputed

Friday, December 3, 2010 – F. Aharonian et al, ApJ 691, 175 (2009)

halo modeling based on galaxy formation theory

 $\frac{\overline{J}_{\rm CMa}}{\overline{J}_{\rm NFW}^{\rm GC}} \approx 0.2$

with the assumption M_{CMa} = 3 10⁸ M_{sol}

HESS observations towards Carina/Sculptor

data taken in 2008 (Sculptor) and 2008-2009 (Carina)

distance (kpc) t observation <zenith angle> Eff threshold (GeV) 34° 101 14.8 h 320 Carina dwarf 14° 11.8 h 220 Sculptor dwarf 79 (deb) 49.5 Dec (deg) 3 -32 Carina dwarf Sculptor dwarf -32.5 (preliminary) -50 (preliminary) -33 -50.5 Û 0 - --33.5 -51 targets _ --1 -34 -2 Excess Ny < 8.6 -34.5Excess Ny < 32.4 -2 -52 (95% CL) (95% CL) -3 -35 -3 -52.5 -35.5 01h00m 00h55m 06h50m 06h40m 06h30m 01h10m 01h05m RA (hours) RA (hours)

Friday, December 3, 2010

DM modeling of Sculptor and Carina

2 halo profiles:

$$p_{\rm NFW} = \frac{\rho_o r_S}{r} \frac{1}{(1 + r/r_S)^2} \quad \text{NFW}$$

$$p_{\rm core} = \frac{\rho_c r_c^2}{r^2 + r_c^2} \quad \text{core}$$

- models parameters fitted to velocity dispersion and luminosity profile data.
- models taken from publications:
 - Sculptor: G. Battaglia thesis (2007)
 Battaglia et al , (2008)
 - Carina: Gilmore et al (2007)
 Walker et al (2007)
- Astrophysical factors J

$$\frac{\bar{J}_{\text{Sculptor}}}{\bar{J}_{\text{NFW}}^{\text{GC}}} = (0.2 - 2.3) \cdot 10^{-2}$$
$$\frac{\bar{J}_{\text{Carina}}}{\bar{J}_{\text{NFW}}^{\text{GC}}} = (0.7 - 1.5) \cdot 10^{-3}$$

Friday, December 3, 2010

Sculptor and Carina: exclusion limits (MSSM)

Sculptor dwarf Carina dwarf 10⁻¹⁹ sem3 s-1) م ^ 20 (10⁻¹⁹ s cm₂ x cm₃ x cm₁ s cm₂ x cm Excluded (95% CL) Excluded (95% CL) range 10-21 10-21 istrophysical models 10-22 10-22 NFW (const., 20) NFW (β ..., 20) - NFW profile NFW (const., 35) NFW (B ..., 35) Iso (const., 0.05) 10-23 10-23 Iso (β_{OM}, 0.05) Iso profile Fermi limit Iso (const., 0.5) Iso (Boy, 0.5) Fermi limits for NFW HESS limits for Fermi's NFW profile 10-24 10-24 10-1 10-1 10 10 10 m_{DM}(TeV) m_{DM}(TeV) Constraints on MSSM models at the level of min 5 10

From HESS to CTA

Friday, December 3, 2010

Signal boosts

— astrophysics: — « clumps »: few % enhancement for Carina/Sculptor

Carina dwarf : Sommerfeld effect

Friday, December 3, 2010

Sculptor dwarf: enhancements from IB and Sommerfeld effect

Friday, December 3, 2010

Galactic plane flux sensitivity map (HESS)

- $-|b| \le 3^\circ, -30^\circ \le |\le 60^\circ$
- -map divided into 0.02° x 0.02° bin
- —smoothed to a $0.1^{\circ} \times 0.1^{\circ}$ resolution (HESS)

Galactic plane sensitivity map (2)

- in each bin (b,l) of the map, get N_{γ} (γ candidates)/ N_{hadr}
- outside sources, N_{γ} is dominated by fake gammas
- background B estimated by the « template method »

(from Berge et al 2007)

— Assumes dN/dE from $\chi\chi \rightarrow$ bb (not sensitive to this assumption) M_u = 500 GeV

Dark matter annihilation around IMBH

Friday, December 3, 2010

HESS IMBH limits (scenario B)

— for each m_{DM} , decrease $<\sigma$ v> until N_{IMBH} < 2.3 F.Aharonian et al (HESS)+Bertone, PRD 78 (2008), 072008

Friday, December 3, 2010

Dark matter clumps

- clumps from ViaLacteaII (*Diemand, Kuhlen, Madau, 2008*)
- $-\sim 10^4$ resolved halos in MW (M>10⁵M_{sol})
- 10³ random realizations (rotate the observer position @8.5 kpc)
- 168±44 clumps inside HESS galactic survey

HESS clump limits

- use the HESS Galactic plane sensitivity map
- 90% C.L. limits comparable to Sgr dwarf, Galactic Center
- P.Brun, E.Moulin, J.Diemand, J-F.G, submitted to PRD (2010)

«Wish list» of the VHE astrophysicist

CTA expected sensitivity

from Amenomori et al (ICRC2009)

The CTA concept

CTA: array design

Performances: angular resolution

 Angular resolution improves as more telescopes used in reconstrution

Angular resolutioncloser to theoretical limit

S.Funk, J.A. Hinton, arXiV0901.2153

CTA operation modes

Friday, December 3, 2010

Expectations for Galactic plane survey

Funk, Hinton, Hermann, Digel, arXiV0901.1885

- assumes
 - -x 2 improvement in hadron rejection
 - x 2 gain in angular resolution
 - x 10 gain in effective area
- \Rightarrow overall increase in sensitivity of ~ 9
- expect ~ 300 sources in -30 deg $\leq 1 \leq 30$ deg.

Friday, December 3, 2010

Galactic plane sensitivity (CTA)

Friday, December 3, 2010

CTA clump limits (Galactic plane)

P.Brun, E.Moulin, J.Diemand, J-F.G, PRD sub. (2010)

— 90% C.L. limits improved by an order of mag/ HESS — interesting $<\!\sigma$ v>s not reached

CTA clump limits (1/4 sky)

P.Brun, E.Moulin, J.Diemand, J-F.G, PRD sub. (2010)

- 1/4 survey in ~6 years
- assume 5 10⁻¹³ cm⁻²s⁻¹ sensitivity (5 hour/bin)
- number of subhalos: 3907±324
- thermal WIMPs region reachable

Sculptor dwarf, extrapolation to CTA

Friday, December 3, 2010

Sculptor dwarf (CTA)

Sculptor, 11.8 hours, extrapolated to CTA

Friday, December 3, 2010

The CTA consortium

— Aims:

- select the appropriate sites
- reduce production costs of telescopes, sensors, electronics etc (technology already proven with HESS, MAGIC, VERITAS).
- improve reliability of components and systems
- prepare the construction of the observatories
- 25 countries (France, Germany, Spain, Poland, Italy, +USA, Japan)
- ~ 685 physicists+engineers (220 FTE)
- spokespersons: W.Hoffman (MPIK Heidelberg)
 M.Martinez (IFAE, Barcelone)
- merged with competiting project AGIS in 2010
- design study started in 2008 (Barcelona meeting)
- Concept design report published in August 2010
- in prep. phase of the FP7 since October 2010

CTA instruments

CTA Design study at IRFU-Saclay

- telescope design (medium/large)
- mirrors
- electronics

site development/ energy management

Requirements for telescopes

dish ø=6 m (small) ø=12 m (medium) ø=23 m (large)
 dish shape spherical (Davies-Cotton): S+M, parabolic (L)

- f/d = 1.4 (M) and 1.2-1.4 (L)

- Camera Field of View: 8° (M), 5° (L)
- Number of pixels in camera ~ 1500 (M), ~ 2500 (L)
- Camera weight: 2.5 tons (M), 2 tons (L)

Small size telescope

- 2 options:
 - (baseline) 6 meter dish, camera 9 deg FOV, 1300 PMT
 - 2 mirror design, primary mirror 3.5 m, camera 8 deg FOV, 1600 pixels MAPMT or SiPM

23-meter class telescopes

possible design: extrapolate from MAGIC 17 m telescopes

MERO (company) design MPI-P Munich, LAPP Annecy

Friday, December 3, 2010

12-meter class telescopes

- previous designs: HESS, VERITAS OK
- CTA DS focused on
 - cost reduction,
 - improvement of reliability ..
- Alternative: dual mirror design (AGIS)

Friday, December 3, 2010

— MST prototype to be built in Berlin (2011-2012)

Site of 12 m telescope prototype in Adlershof

The University complex in the immediate neighborhood The Erwin Schrödinger cafeteria

Mirror specifications

- hexagonal
- size: $1200 \text{ mm} \pm 2 \text{ mm}$ flat to flat (MST prototype)
- weight < 35 kg/m²
 (including AMC and fixations)
- reflectance > 80% (300-600 nm)

- spot size < 1mrad (68% containment</p>
- spherical with radius 30-40 m (MST), aspherical (LST)

Mirror developpement (1)

MAGIC I-II aluminium mirror (INFN Padova) diamond milling

MAGIC II glass mirrors (INAF, Mediolario)
 produced by the « cold slumping » technique.

Mirror developpement (2)

 Carbon/glass fiber composite mirrors (IRFU-Saclay, IFJ Cracow, SRC Warsaw)

CARBON SHEETS 1.5 MM THICK

Friday, December 3, 2010

Mirror R&D at IRFU-Saclay

Friday, December 3, 2010

Design of large mirrors at IRFU

Summary and prospects

- Present Cherenkov Telescope arrays lack a few order of magnitude to be sensitive to « natural » WIMP models.
- New clump-based limit with HESS galactic plane at the level of $<\sigma$ v>~10⁻²³ cm⁻²s⁻¹
- CTA will be the major observatory in VHE gamma ray astronomy in the 2020s with both guaranteed astrophysics and a significant discovery potential.
- CTA could discover a few DM clumps in a 1/4 sky survey
- The CTA design study is aiming at reducing costs and improving reliability of instruments and systems.
 It is on-going, with significant advances in mirror technology, telescope design (MST), electronics.
- The FP7 prep. phase for the CTA has just started in October 2010 for 3 years.

Backup slides

Bounds on the quantum gravity scale

- At the quantum gravity scale, photons and neutrinos expected to experience a non-trivial refractive index in vacuum.
- Parametrization: $v = 1 \xi \left(\frac{E}{M_1}\right) \quad (v = 1 \xi \left(\frac{E}{M_2}\right)^2)$ with $M_{1,2} \sim M_{Planck}$
- One expects a time difference for photons of different energies emitted at the same time.

- Sensitivity to
$$M_1$$
 (M_2): $M_1 \approx \frac{L \Delta E}{c \Delta t_{burst}} \approx 10^{15} GeV \left(\frac{L}{500 Mpc}\right) \left(\frac{\Delta E}{1 GeV}\right) \left(\frac{60 s}{\Delta t_{burst}}\right)$

- Pulsar observed at GeV energies, L~1kpc, $\Delta t \sim 1 ms$ M1 ~10 GeV
- AGN with Cerenkov telescopes, $z \sim 0.1$, $\Delta t \sim 1mn$, $E \sim 1$ TeV, M1~10 GeV

Mkn501 (MAGIC)

- large flare (~3.5 Crab units) on 9/07/2005

Albert et al (MAGIC) ApJ,669,862 (2007)

- flux-doubling time ~2 minutes
- time of maximum energy dependent: $t_{max}(>1.7 \text{ TeV}) t_{max}(<..1 \text{ TeV}) = \epsilon \pm 1 \text{ minute}$ limits on quantum gravity scale: M > 0.26 10 GeV (95%CL)

Albert et al (MAGIC)+J.Ellis et al. (arXiv:0708.2889, 2007)

Friday, December 3, 2010

AGN physics: PKS2155-304 (H.E.S.S)

- blazar at z=0.116 (L=580Mpc)
- > 5 outbursts (up to 15 Crab Units) observed on 28/07/2006
- flux-doubling time = 330 ± 40 s
- shortest rise time =173 \pm 28s ~(R_{Schwarzschild}/c)/100

 \Rightarrow large boost factor

F.Aharonian et al. (HESS), ApJ 664,L71 (2007)

GC: exclusion plot

(p)MSSM predictions: DarkSusy 4.1

Friday, December 3, 2010

HESS high energy electron signal

Friday, December 3, 2010

Performances: array sensitivity

K. Bernloehr, arXiV0801.5722

Focal plane instrumentation (1)

- Baseline option: PMTs (Hamamatsu, Electron Tubes)
- look for compromise between QE, afterpulsing, pulse width, cost..

Focal plane instrumentation (2)

- other options: MCPPMT,G-APD
- useful for 2-mirror telescopes designs
- test: 4 MPPC in MAGIC camera A.Biland et al, NIM A (2008)
- FACT camera (see talk by T.Krahenbuhl)
- I.Braun et al, NIM A (2009)
 - full camera
 - 1440 pixels
 - on HEGRA CT3 telescope

1 pixel=4 G-APD

Winston cone _ _ _

Weitzel et al, ICRC 2009

Hamamatsu MPPC S10362-33-50C 50 μ x 50 μ cell size

Front end electronics

- Main backgrounds in ground based VHE astronomy:
 - parasitic, diffuse light
 - charged cosmic rays: protons, helium, electrons showering in atmosphere
- Cherenkov signal from particle showers very fast (~2 ns for γ rays)

- Typical trigger rate ~1 kHz/telescope (Crab nebula rate ~0.1 Hz) \Rightarrow **dominated by background**

Fast electronics improves the rejection of parasitic light

Signal readout and telescope trigger

- Options for camera:
 - compact camera with electronics on board (HESS, VERITAS) or
 - signal sent to ground (MAGIC)
 - \Rightarrow compact option was retained (except maybe LST...)
- Options for read-out:
 - Sampling at ~ 300 MHz with FADC (fully digital camera)
 MPIK Heidelberg, ETH Zurich, Leeds, Uni. Zurich, AGH
 - analogue memories (1 GHz sampling)+ADC
 Pisa, IRFU Saclay, LPNHE, LPTA, Uni. Barcelona
- Local trigger of telescope:
 - analog or digital (analogue memories based read-out)
 spanish groups (IFAE..), DESY
 - digital (FADC)

Analogue memories-based FE boards

– NECTAr: IRFU/LPNHE/LPTA/Univ. Barcelona

- see poster by S.Vorobiov
- based on SAM chip (HESS2)
- new developpment to reduce power consumption and integrate the ADC
- Dragon: Pisa
 - based on commercially available DRS-4 chip

analogue memories design @ IRFU

HESS (2004): ARS0 128 cells sampling 1 GHz dead time 256 μ s power 500 mW/chan

HESS2 (2011): SAM 256 cells sampling 1-3 GHz dead time < 15 μ s power 300 mW/chan

E. Delagnes (IRFU)

Timeline for CTA

67

Friday, December 3, 2010

	04	05	06	07	08	09	10	11	12	13
HESS		F	hase	1			Pha	se 2		
MAGIC		F	^o hase	1		Pha	ase 2			
VERITAS										
СТА					De	sign Stu	dy	Prototy	pes	Const.
Fermi					July Launch					
AGILE										
							HA	WC?		

Friday, December 3, 2010