Interpreting Higgs results

Adam Falkowski LPT Orsay

Brussels, 23 Mars 2012

Carmi,AA,Kuflik,Volansky [1202.3144] AA,Rychkov,Urbano [1202.1532] + oven fresh unpublished

2 Higgs - observations

Who broke electroweak symmetry?

- Since LEP we know for a fact fundamental interactions of matter obey $SU(2) \times U(1)$ local symmetry that is however spontaneously broken (non-linearly realized), as W, Z and fermions have masses
- The Question for the LHC is the precise nature of electroweak symmetry breaking
- More rigorously, the question is what sort of physics stops the growth of the scattering amplitudes of W and Z bosons:
 - In the SM (without Higgs) the tree-level amplitude for longitudinally polarized W's and Z's grows with energy, ${\cal M}\sim s/v^2$
 - Unitarity requires ${\rm Re}\,\bar{\cal M}^J < 1/2$ for all partial waves. Perturbative unitarity is lost at TeV
 - Something else must enter before that scale!

Options for Electroweak Symmetry Breaking

3 basic possibilities. Unitarity saved by

- Non-Perturbative effects in the SM (no concrete framework so far)
- Strongly Coupled: composite vectors and/or scalars to WW and WZ
- Weakly Coupled: fundamental scalar coupled to WW and ZZ, otherwise known as the Higgs
- \bullet ...or a combination of the above, for example Composite Higgs weakly coupled up to \sim 3 TeV, then strongly coupled

picture stolen from C. Grojean

- Current experimental data strongly suggest that the weakly coupled option is approximately true, at least for $E\lesssim 1$ TeV, and likely up to much higher scales
 - Electroweak precision tests
 - No new vector or tensor states observed at the Tevatron and LHC
 - Higgs-like excess near 125 GeV
- Furthermore, they point to the simplest realization with a single Higgs boson resposible for unitarizing WW scattering
 - Approximate global symmetries of SM, such as flavor and CP seem to be very well preserved

(almost) Unshakable Arguments

- \blacksquare Observed neutrino masses imply new physics (at least, right-handed neutrinos) somewhere between 1 keV and $10^{15}~{\rm GeV}$
- 0 Existence of dark matter requires new physics somewhere between sub-eV and $10^{19}~\text{GeV}$
- 0 Domination of matter over anti-matter requires new physics between 100 GeV and $10^{16}~\text{GeV}$

unfortunately, none of above guarantees new physics showing up in LHC

Some Esthetic Arguments

- Fermion masses and mixings suggests another sector generating the observed structures, at any scale above TeV and Planck
- \bullet Approximate unification of gauge couplings suggests new states at any scale between 100 and $10^{14}~{\rm GeV}$
- \bullet Higgs potential metastability suggests new physics between 100 GeV and $10^{10}~{\rm GeV}$
- Instability of Higgs mass against radiative corrections suggests new states at 100 GeV

only one, somewhat shaky argument clearly points to new physics in LHC

$$\delta m_H^2 = \cdots \delta m + \cdots \delta m$$

- Hierarchy problem dominated model building for last 30 years
- Two important classes of solutions
 - Supersymmetry: fermion-boson cancellation, may be weakly coupled up to Planck scale
 - Composite/Little Higgs: boson-boson or fermion-fermion cancellation, weakly coupled up to 3-10 TeV, then strongly coupled
- All existing models introduce a multitude of new particles at weak scale, and require serious conspiracy why they preserve approximate accidental symmetries of the SM, to avoid showing up indirectly in numerous precision measurements
- Typically, in specific realizations advertised as natural one has 1-0.1% fine-tuning, after experimental constraints are taken into account

Fermionic top partners T

- Limits depending on dominant decay
- Constraints on T → bW channel (typically 50% branching ratio in models without T-parity) and on T → t+MET (expected in models with T-parity)
- Current limits on mass around 400 500 GeV
- Naturalness under stress, but not completely dead yet...

Scalar top partners \tilde{t}

- In generic SUSY $m_{ ilde{t}}\gtrsim 1~{
 m TeV}
 ightarrow$ serious fine-tuning problem
- But, for $m_{\tilde{t}} \ll m_{\tilde{q}}$ and $m_{\tilde{t}} \ll m_{\tilde{g}}$ limits become much weaker
- Currently only theorist-level robust limit on stops, $m_{\tilde{t}} \gtrsim 150 250$ GeV, depending on decay mode and LSP mass Papucci et al [1110.6926]
- Related limits on direct sbottom production from ATLAS [1112.3832]
- Reasonanble fine-tuning still possible if stops and sbottom are only colored superpartner below TeV

- Naturalness window still half open
- But no experimental hint of a larger framework just around the corner

Dominant attitude in theory:

- Hierarchy problem may or may not be relevant
- Model building now dominated by LHC data, not theory prejudice

Hierarchy problem and Higgs physics

stolen from R. Rattazzi

- The SM Higgs with mass $m_h \sim 125~{\rm GeV}$ has many decay channels that are potentially observable at the LHC and Tevatron
 - Now: $H \rightarrow ZZ^*$, $H \rightarrow \gamma\gamma$, and $H \rightarrow b\bar{b}$
 - Shortly: $H \rightarrow WW^*$
 - ~ 1 year perspective: $H o au^+ au^-$
- Also different production channels can be isolated
 - Now: gluon fusion and (maybe) vector boson fusion
 - Longer Perspective: W/Z and $t\bar{t}$ associated production
- Rich Higgs physics available in near future
- If new physics exists, Higgs interactions likely to be modified
- If new physics restores naturalness, Higgs interactions are necessarily modified
- Measuring Higgs rates at the LHC may be the shortest route to new physics!

Higgs Observations

- Significant background, but great mass resolution
- Both ATLAS and CMS observe an excess near $m_h \sim 125$ GeV, ATLAS centered at 126 and CMS centered at 125
- In both case the best fit cross section at the peak exceeds the SM value, though the latter is well within uncertainties
- CMS also observes an excess in inclusive $\gamma\gamma jj$ channel dominated by VBF production mode, corresponding to cross section well exceeding the SM one (though, again, uncertainties are still large)

- Very low background, great mass resolution
- ATLAS has 3 events at $m_{4/} pprox$ 124 GeV
- CMS has 2 events at $m_{4/} \approx 126 \text{ GeV}$

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
$5 m_H = 125 \text{ GeV}$	25 ± 7	110 ± 12	12 ± 3	7 ± 2	5 ± 2	13 ± 8	27 ± 16	173 ± 22	174
$\dot{o} m_H = 240 \text{ GeV}$	60 ± 17	432 ± 49	24 ± 3	68 ± 15	39 ± 9	8 ± 2	36 ± 24	607 ± 63	629
$\underline{5} m_H = 125 \text{ GeV}$	6 ± 2	18 ± 3	6 ± 3	7 ± 2	4 ± 2	6 ± 1	5 ± 3	45 ± 7	56
$-m_H = 240 \text{ GeV}$	23 ± 9	99 ± 22	8 ± 1	73 ± 27	35 ± 19	6 ± 2	7 ± 7	229 ± 55	232
$\underline{\mathbf{v}}_{H} = 125 \text{ GeV}$	0.4 ± 0.2	0.3 ± 0.2	negl.	0.2 ± 0.1	negl.	0.0 ± 0.1	negl.	0.5 ± 0.2	0
$\dot{\bigtriangledown} m_H = 240 \text{ GeV}$	2.5 ± 0.6	1.1 ± 0.7	0.1 ± 0.1	2.6 ± 1.3	0.3 ± 0.3	negl.	0.1 ± 0.1	4.2 ± 1.7	2

- Significant background, poor mass resolution, better for exclusion than discovery
- No clear excess here, which begins to feel weird
- Bad luck, background misestimation, or something interesting going on?

- Low mass range excluded by Tevatron and LHC except for 122-127 GeV range
- Even lower mass range excluded by LEP,
- High mass range excluded by LHC, or highly disfavored by EWPT

- Slightly too much signal in $\gamma\gamma$ channel
- Slightly too little signal in WW and ZZ channels
- Overall good consistency with SM Higgs predictions

- Broad \sim 3 sigma excess in low mass range, mostly originating from \sim 40 excess events in $W/Z + H \rightarrow b\bar{b}$ production mode in CDF
- Consistent with 120-140 GeV Higgs

- Points to somewhat enhanced rate in VH production channel, the heavier Higgs, the larger cross section boost is needed
- Doesn't strongly favor any mass between 120 and 135 GeV

Announcement

The Higgs boson has been discovered at has the mass near 125 GeV

Next Level Is it the SM Higgs? Higgs Theory

Higgs effective theory

Define effective Higgs Lagrangian at $\mu\approx m_h\sim 125\,GeV.$ Couplings relevant for current LHC data

$$\mathcal{L}_{eff} = c_{V} \frac{2m_{W}^{2}}{v} h W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \bar{b} b - c_{\tau} \frac{m_{\tau}}{v} h \bar{\tau} \tau$$
$$+ c_{g} \frac{\alpha_{s}}{12\pi v} h G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$$

 Only one theoretical prejudice: custodial isospin requires same Higgs coupling to W and Z. Otherwise for c_W ≠ c_Z:

$$\Delta T = (c_W^2 - c_Z^2) \alpha_{EM}^{-1} \frac{\Lambda^2}{16\pi^2 v^2}$$

For $\Lambda \sim 1$ TeV c_W and c_Z have to within 1%

- For time being already assume that $c_{ au} = c_b$ (until better au au data arrive)
- \bullet Top already integrated out, contributing to c_g and c_γ
- SM predicts $c_V=c_b=c_g=1$ and $c_\gamma=2/9$
- Any of the couplings can be modified in specific scenarios beyond the SM
- All LHC Higgs rates can be easily expressed as functions of the c_i couplings

The decay widths of the Higgs relative to the SM predictions are modified approximately as,

$$\frac{\Gamma(h \to b\bar{b})}{\Gamma_{SM}(h \to b\bar{b})} \simeq |c_b|^2$$

$$\frac{\Gamma(h \to WW^*)}{\Gamma_{SM}(h \to WW^*)} = \frac{\Gamma(h \to ZZ^*)}{\Gamma_{SM}(h \to ZZ^*)} \simeq |c_V|^2$$

$$\frac{\Gamma(h \to gg)}{\Gamma_{SM}(h \to gg)} \simeq |c_g|^2$$

$$\frac{\Gamma(h \to \gamma\gamma)}{\Gamma_{SM}(h \to \gamma\gamma)} \simeq \left|\frac{\hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}}\right|^2 \qquad (1)$$

where, taking into account W loop and assuming $m_h \approx 125$, $\hat{c}_\gamma \approx c_\gamma - c_V$, and $\hat{c}_{\gamma,SM} \approx -0.8$

For $m_h \sim 125~{
m GeV}$ total Higgs width scales as

$$rac{\Gamma(h)}{\Gamma_{SM}(h)}\simeq 0.65c_b^2+0.25c_V^2+0.1c_g^2$$

Assuming $H \rightarrow bb$ dominates Higgs widths

$$R_{V} \equiv \frac{\sigma(pp \to h)\mathrm{Br}(h \to ZZ^{*})}{\sigma_{SM}(pp \to h)\mathrm{Br}_{SM}(h \to ZZ^{*})} \simeq \left|\frac{c_{g}c_{V}}{c_{b}}\right|^{2},$$

$$R_{\gamma} \equiv \frac{\sigma(pp \to h)\mathrm{Br}(h \to \gamma\gamma)}{\sigma_{SM}(pp \to h)\mathrm{Br}_{SM}(h \to \gamma\gamma)} \simeq \left|\frac{c_{g}\hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}c_{b}}\right|^{2},$$

$$R_{\gamma,VBF} \equiv \frac{\sigma(pp \to hjj)\mathrm{Br}(h \to \gamma\gamma)}{\sigma_{SM}(pp \to hjj)\mathrm{Br}_{SM}(h \to \gamma\gamma)} \simeq \left|\frac{c_{V}\hat{c}_{\gamma}}{\hat{c}_{\gamma,SM}c_{b}}\right|^{2}.$$

$$R_{\mathrm{Tev}} \equiv \frac{\sigma(p\bar{p} \to Vh)\mathrm{Br}(h \to b\bar{b})}{\sigma_{SM}(p\bar{p} \to Vh)\mathrm{Br}_{SM}(h \to b\bar{b})} \simeq c_{V}^{2}, \qquad (2)$$

$$\mathcal{L}_{eff} = c_{V} \frac{2m_{W}^{2}}{v} h W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{m_{Z}^{2}}{v} h Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \bar{b} b - c_{b} \frac{m_{\tau}}{v} h \bar{\tau} \tau$$
$$+ c_{g} \frac{\alpha_{s}}{12\pi v} h G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$$

- We will find the region of effective theory parameter space favored by 2011 LHC Higgs data
- Interesting to check whether the current LHC data are consistent with the SM Higgs
- Also interesting, whether they favor or disfavor any particular BSM scenario
- Of course at this stage one cannot make very strong statements about Higgs couplimgs (some of you don't even think Higgs has been discovered)
- Consider it a warm-up exercise, in preparation for serious signals
- Recently Carmi [1202.3144], Azatov [1202.3415] and Espinosa [1202.3697]

Illegal ATLAS/CMS combination

Carmi et al [1202.3144], Moriond updates not included, bands are 1 sigma

Fits assuming $m_h = 125$ GeV

Preliminary

- Only dimension-5 Higgs couplings allowed to vary
- On this plane Tevatron never within 1 sigma band
- Combined = $\chi^2 < 6.25$ (full 4-parameter $\Delta \chi^2$ plots in preparation)

Fits assuming $m_h = 125$ GeV

Preliminary

- Composite Higgs inspired parametrization
- Couplings to fermions and gauge boson allowed to vary independently

Fits assuming $m_h = 125$ GeV

Preliminary

 Higgs coupling to EW gauge bosons, and dimension 5 effective Higgs coupling to gluons allowed to vary

• Top partner models relation
$$c_{\gamma} = 2c_g/9$$

Scalar partner toy model

- Very toy "natural" model: just one scalar top partner (this is not SUSY, where at least two scalar partners are needed)
- Top partner interactions with Higgs to cancel top quadratic divergences

$$-\left(yHQt^{c}+\mathrm{h.c.}\right)-|\tilde{t}|^{2}\left(M^{2}+2y^{2}|H|^{2}\right)$$

- Only one free parameter: top partner mass $m_{\tilde{t}}^2 = M^2 + y^2 v^2$
- New contributions to effective dimension 5 Higgs interactions

$$rac{c_{
m g}}{c_{
m g,SM}} = rac{c_{\gamma}}{c_{\gamma,{
m SM}}} \simeq 1 + rac{m_t^2}{2m_t^2}$$

Fermion partner model

- For fermionic top partner, non-renormalizable interactions with Higgs needed to cancel top quadratic divergence
- Simple model inspired by T-parity conserving Little Higgs

 $-(y\sin(|H|/f)Qt^{c} + h.c.) - yf\cos(|H|/f)TT^{c}$

- Again only one free parameter: top partner mass $m_T = yf \cos(v/\sqrt{2}f)$
- New contributions to effective dimension 5 Higgs interactions

$$rac{c_g}{c_{g,\mathrm{SM}}} = rac{c_\gamma}{c_{\gamma,\mathrm{SM}}} \simeq 1 - rac{m_t^2}{m_T^2}$$

- Beginning of a beautiful friendship
- More Higgs data from LHC may favor/disfavor particular BSM scenarios...
- ...or just confirm the SM again

What If ?

- Current combined Higgs data allow, while Tevatron and VBF $\gamma\gamma$ channel in CMS favor increased Higgs coupling to WW and ZZ
- What if indeed $c_V > 1$?

- If SM Higgs doublet mixes with a singlet or another doublet, then always $c_V = \cos \alpha < 1$. Thus enhancement impossible in typical SUSY models.
- For Higgs being a pseudo-Goldstone boson of any compact coset (Little Higgs and composite Higgs), also $c_V = \cos(v/f) < 1$. Again, enhancement of c_V impossible
- Low et al [0907.5413]: sum rule proving $c_V > 1$ implies charge-2 Higgs
- AA et al [1202.1532] : stronger sum rule (assuming custodial symmetry)

$$1 - c_V^2 \approx rac{v^2}{6\pi} \int_0^\infty rac{ds}{s} \left(2\sigma_{I=0}^{
m tot}(s) + 3\sigma_{I=1}^{
m tot}(s) - 5\sigma_{I=2}^{
m tot}(s)
ight).$$

• $c_V > 1$ implies enhancement of isospin 2 channel of WW scattering

Simplest realization of isospin 2 enhancement

- Quintuplet of weakly coupled scalars $Q = (Q^{--}, Q^{-}, Q^{0}, Q^{+}, Q^{++})$
- · Coupled to electroweak gauge bosons in custodially invariant way

$$\frac{g_{Q}}{v}\left\{\sqrt{\frac{2}{3}}Q^{0}\left(m_{W}^{2}W_{\mu}^{+}W_{\mu}^{-}-m_{Z}^{2}Z_{\mu}^{2}\right)+\left(Q^{++}m_{W}^{2}W_{\mu}^{-}W_{\mu}^{-}+\sqrt{2}Q^{+}m_{W}m_{Z}W_{\mu}^{-}Z_{\mu}+hc\right)\right\}$$

Sum rule fulfilled for

$$g_Q^2 = \frac{6}{5} \left(c_V^2 - 1 \right)$$

- What is special about $g_Q^2 = 6/5(c_V^2 1)$?
- Quintuplet, much like Higgs, contributes to WW scattering but, unlike Higgs, it has *opposite* couplings to W and Z
- For generic ab
 ightarrow cd process in the limit g'
 ightarrow 0

 $A(s,t,u)\delta^{ab}\delta^{cd} + A(t,s,u)\delta^{ac}\delta^{bd} + A(u,t,s)\delta^{ad}\delta^{bc}$

For example $A_{W^+W^- \rightarrow ZZ} = A(s, t, u)$, $A_{W^+W^+ \rightarrow W^+W^+} = A(t, s, u) + A(u, t, s)$, etc

• Isospin singlet and quintuplet contribute as Alboteanu et al [0806.4145]

$$A(s,t,u) = \frac{s}{v^2} \left(1 - c_V^2 \frac{s}{s - m_h^2} \right) + \frac{g_Q^2}{v^2} \left(\frac{s^2}{3(s - m_Q^2)} - \frac{t^2}{2(t - m_Q^2)} - \frac{u^2}{2(u - m_Q^2)} \right)$$

• For $s \gg m_{h,Q}^2$

$$A(s,t,u) \approx rac{s}{v^2} \left(1-c_V^2+rac{5g_Q^2}{6}
ight)$$

Higgs overshoots unitarization, but for $g_Q^2 = 6/5(c_V^2 - 1)$ quintuplet restores unitary behavior as long as m_Q is not too large

- Quinituplet can be part of renormalizable Higgs sector provided one allows for higher-than-doublet representations under $SU(2)_W$
- Minimal model: scalar Φ in (3,3) representation under global SU(2) × SU(2) (complex triplet + real triplet under SU(2)_W)
- $\bullet~$ Under custodial isospin $\Phi~$ decomposes as singlet +~ triplet +~ quintuplet

$$\begin{pmatrix} \frac{v}{2\sqrt{2}} + \frac{1}{\sqrt{3}}h - \frac{1}{\sqrt{6}}Q^{0} + \frac{i}{\sqrt{2}}\pi^{0} & -\frac{1}{\sqrt{2}}(Q^{+} + i\pi^{+}) & -Q^{++} \\ -\frac{1}{\sqrt{2}}(Q^{-} + i\pi^{-}) & \frac{v}{2\sqrt{2}} + \frac{1}{\sqrt{3}}h + \sqrt{\frac{2}{3}}Q^{0} & -\frac{1}{\sqrt{2}}(Q^{+} - i\pi^{+}) \\ -Q^{--} & -\frac{1}{\sqrt{2}}(Q^{-} - i\pi^{-}) & \frac{v}{2\sqrt{2}} + \frac{1}{\sqrt{3}}h - \frac{1}{\sqrt{6}}Q^{0} - \frac{i}{\sqrt{2}}\pi^{0} \end{pmatrix}$$

corresponding to $c_V=\sqrt{8/3}$ and $g_Q=\sqrt{2}.$

- Smaller c_V can be obtained when Φ mixes with EW singlet, or doublet (Georgi,Machacek [(1985)])
- More general Higgs representations under $SU(2) \times SU(2)$ studied in Low,Lykken [1005.0872]

Possible effect on Higgs

• Custodial invariant coupling of Higgs and quintuplet:

$$\mathcal{L}_{hQQ} = -2g_{hQQ}m_Q^2rac{h}{v}\left(|Q^{++}|^2+|Q^{+}|^2+rac{1}{2}(Q^0)^2
ight).$$

Minimal renormalizable model: $g_{hQQ} = \sqrt{\frac{2}{3}} \frac{m_h^2 + 2m_Q^2}{m_Q^2}$

 $\bullet\,$ Shifts effective Higgs coupling to $\gamma\gamma$ by

$$\delta c_{\gamma} pprox rac{5}{24} g_{hQQ}$$

• Thus, generic prediction of increased Higgs couplings to WW and ZZ, and decreased effective Higgs coupling to photons

- The puzzle of electroweak symmetry breaking is about to be solved
- Hints from the LHC and other experiments consistently point to weakly coupled electroweak symmetry breaking with a light Higgs boson
- Measuring Higgs coupling may soon give us strong hints favoring or disfavoring particular models beyond the Standard Model
- If data clearly points to $c_V > 1$, all hands on board to search for 5 more Higgs bosons!
- At least this year is going to be exciting...