LHC Phenomenology of Type II Seesaw

Eung Jin Chun

Thank you for invitation!

Outline

Introduction to type II seesaw
 Triplet boson spectrum and decay channels

LHC search

Doubly charged boson production and decay CMS result

Same-sign tetra-leptons Triplet-antitriplet oscillation

EBH boson Phenomenology EWPD

Perturbativity & vacuum stability

Diphoton rate

EJC, Lee, Park, 0304069

EJC & Sharma, 1206.6278

EJC, Lee & Sharma, 1209.1303

Introduction

An SU(2) doublet boson (Y=1/2) is responsible for the masses of quarks and charged leptons as well as for the electroweak symmetry breaking.

July 4, 2012 !

What about neutrino masses? Maybe due to an "SU(2) triplet boson (Y=I)":

Type II Seesaw

Peculiar prediction of a doubly charged boson:

 $\varDelta = (\varDelta^{++}, \, \varDelta^+, \, \varDelta^0)$

• Main search channel: $\Delta^{++} \rightarrow I^+ I^+$

Type II Seesaw

Introduce a doublet (Y=1/2) & triplet (Y=1):

$$\Phi = (\Phi^+, \Phi^0) \qquad \Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

Triplet VEV generates neutrino mass matrix:

$$\mathcal{L}_{Y} = f_{\alpha\beta} L_{\alpha}^{T} C i \tau_{2} \Delta L_{\beta} + \frac{1}{\sqrt{2}} \mu \Phi^{T} i \tau_{2} \Delta \Phi + h.c. \Rightarrow v_{\Delta} = \mu \frac{v_{\Phi}^{2}}{M_{\Delta}^{2}}$$
$$m_{\alpha\beta}^{\nu} = f_{\alpha\beta} v_{\Delta} \Rightarrow f_{\alpha\beta} \frac{v_{\Delta}}{v_{\Phi}} \sim 10^{-12}$$

• Collider can tell the neutrino mass pattern: Measure $BR(\Delta^{++} \xrightarrow{f_{\alpha\beta}} l^+_{\alpha} l^+_{\beta})!$ EJC, Lee, Park, 0304069

Scalar sector

Scalar potential of type II seesaw

$$V(\Phi, \Delta) = m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \tau_i \Phi) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c.$$

Five boson mass eigenstates

$$\begin{array}{c} \Delta^{++}, \Delta^{+}, \Delta^{0} \\ \Phi^{+}, \Phi^{0} \end{array} \qquad \Longrightarrow \qquad h^{0}, H^{0}, A^{0}, H^{+}, H^{++} \end{array}$$

Scalar mixing

• Doublet-triplet mixing controlled by $\xi = v_{\Delta}/v_{\Phi}$:

- $\phi_I^0 = G^0 2\xi A^0 \qquad \phi^+ = G^+ + \sqrt{2}\xi H^+ \qquad \phi_R^0 = h^0 a\xi H^0$ $\Delta_I^0 = A^0 + 2\xi G^0 \qquad \Delta^+ = H^+ \sqrt{2}\xi G^+ \qquad \Delta_R^0 = H^0 + a\xi h^0$ $a = 2 + (4\lambda_1 \lambda_4 \lambda_5)v_{\Phi}^2 / (M_{H^0}^2 m_{h^0}^2)$
- We will work in the limit of $\xi << 0.01$.
- (note) ρ parameter constraint: $\rho = (|+2\xi^2)/(|+4\xi^2) \rightarrow \xi < 0.03$

Scalar spectrum

Mass gap among triplet components:

S:
$$\Delta M \approx \frac{\lambda_5}{g^2} \frac{M_W^2}{M} < M_W$$

$$M_{H^{\pm\pm}}^{2} = M^{2} + 2\frac{\lambda_{4} - \lambda_{5}}{g^{2}}M_{W}^{2}$$

$$M_{H^{\pm}}^{2} = M_{H^{\pm\pm}}^{2} + 2\frac{\lambda_{5}}{g^{2}}M_{W}^{2}$$

$$\Delta M = M_{H^{+}} - M_{H^{++}}$$

$$M_{H^{0},A^{0}}^{2} = M_{H^{\pm}}^{2} + 2\frac{\lambda_{5}}{g^{2}}M_{W}^{2}.$$

• Mass gap between H⁰ & A⁰: $\delta M_{HA} \approx 2N$

$$\delta M_{HA} \approx 2M_{H^0} \frac{v_{\Delta}^2}{v_{\Phi}^2} \frac{M_{H^0}^2}{M_{H^0}^2 - m_{h^0}^2}$$

$$\mathcal{L}_{\not\Delta} = \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta^{\dagger} \Phi + h.c. \Rightarrow -\mu v_{\Phi} h^0 H^0$$
$$v_{\Delta} = \frac{\mu v_{\Phi}^2}{\sqrt{2} M_{H^0}^2}$$

Triplet boson decay channels

Two mass hierarchies:

EJC, Lee, Park, 0304069

 $M_{H^{++}} < M_{H^+} < M_{H^0/A^0}$ if $\lambda_5 > 0$ $M_{H^{++}} > M_{H^+} > M_{H^0/A^0}$ if $\lambda_5 < 0$

• Gauge decays if $\Delta M(\lambda_5)$ large enough:

 $H^{0}/A^{0} \to H^{\pm}W^{\mp} \to H^{\pm\pm}W^{\mp}W^{\mp}$ $H^{++} \to H^{\pm}W^{\pm} \to H^{0}/A^{0}W^{\pm}W^{\pm}$

Triplet decay channels

• Di-lepton (same-sign) decays through $f_{\alpha\beta}$:

 $H^{++} \to l^+_{\alpha} l^+_{\beta}$ $H^+ \to l^+_{\alpha} \nu_{\beta}$ $H^0/A^0 \to \nu_{\alpha} \nu_{\beta}$

• Di-quark/di-boson decays through ξ :

 $H^{++} \rightarrow W^+ W^+$

$$\begin{array}{c} f\xi \sim 10^{-12} \\ \Rightarrow f \sim \xi \sim 10^{-6} \end{array}$$

 $H^{+} \to t\bar{b}$ $\to ZW, hW$ $H^{0}/A^{0} \to t\bar{t}, \ b\bar{b}$ $\to ZZ, hh/Zh$

 $\langle \Box \xi \equiv v_{\Delta}/v_{\Phi} \rangle$

Best search channel: SSD from H⁺⁺

• Measure $BR(H^{++} \rightarrow I^+I^+)$ to determine

the neutrino mass pattern: e.g.) NH vs. IH

BR(ee) : BR(eµ) : BR(µµ) = $4r \sin^4 \theta_{12} : r \sin^2 2\theta_{12} : 1$ (NH); $4 : \frac{r^2}{4} \sin^2 2\theta_{12} : 1$ (IH1); $4 : 4 \tan^2 2\theta_{12} : 1$ (IH2) EJC, Lee, Park, 0304069 Garagoya, Schwetz, 0712.1453 Kadastik, Raidal, Lebane, 0712.3912 Akeroyd, Aoki, Sugiyama, 0712.4019 Perez, et.al., 0805.3536

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Lepton Yukawas of the Triplet

• The updated neutrino mass matrix (assuming vanishing CP phases) determines the coupling $f = M^{\nu}/v_{\Delta}$ for given

v_{Δ} :	NH		IH
	0.00403 0.00816 0.00	$0259 \left(0.0479 \right)$	-0.00557 -0.00573
$M^{\nu} =$	0.00816 0.0264 0.0	-0.00557	0.0239 -0.0240
	$0.00259 \ 0.0215 \ 0.0$	$)286 \int \left(-0.00573 \right)$	-0.0240 0.02693

• Assuming 100% BF for di-lepton channels ($v_A < 10^{-4}$ GeV)

Br (%)	ee	$e\mu$	e au	$\mu\mu$	μau	au au
NH	0.62	5.11	0.51	26.8	35.6	31.4
IH1	47.1	1.27	1.35	11.7	23.7	14.9

Production at LHC

LHC search

• CMS looks for $pp \rightarrow H^{++} H^- \rightarrow I^+ I^+ I^- \nu$

CMS, 1207.2666 ATLAS, 1210.5070

& pp → H⁺⁺ H⁻⁻ → I⁺ I⁺ 1⁻ 1⁻.

• Assumption of 100% leptonic decay & $\Delta M=0$.

LHC7 limit

▶ H^{++} H^- → I^+ I^+ $1^ \nu$ & H^{++} H^{--} → I^+ I^+ $1^ 1^-$

Benchmark point	Combined 95% CL limit [GeV]	95% CL limit
_		for pair production only [GeV]
$\mathcal{B}(\Phi^{++} \rightarrow e^+ e^+) = 100\%$	444	382
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \mu^+) = 100\%$	453	391
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \tau^+) = 100\%$	373	293
$\mathcal{B}(\Phi^{++} \rightarrow \mu^+ \mu^+) = 100\%$	459	395
$\mathcal{B}(\Phi^{++} \to \mu^+ \tau^+) = 100\%$	375	300
$\mathcal{B}(\Phi^{++} \to \tau^+ \tau^+) = 100\%$	204	169
BP1	383	333
BP2	408	359
BP3	403	355
BP4	400	353

Benchmark point	ee	еµ	eτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

LHC7 limit

Search for other channels?

• If $\xi > f$, Br(II) < 100% weakens the mass limit. Search for other channels would be necessary:

 $H^{++} \rightarrow W^+W^+; H^+ \rightarrow W^+Z, tb; H^0/A^0 \rightarrow ZZ, hh/Zh, tt$

- Missing triplet if $\lambda_5 < 0$ and $f >> \xi$: $H^{++} \rightarrow H^+ W^* \rightarrow H^0/A^0 W^* W^* \rightarrow \nu \nu W^* W^*$.
- No mass limit yet in these two cases.

Triplet-antitriplet mixing

Triplet (lepton) number is conserved in the production:

A A

$$pp \to \Delta \Delta$$

Triplet number breaking by doublet-triplet mixing:

$$\mathcal{L}_{\underline{A}} = \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta^{\dagger} \Phi + h.c.$$
$$\underline{\bar{\Delta}^0}_{\underline{A}} \xrightarrow{h} \Delta^0_{\underline{A}}$$

It induces a tiny mass splitting:

$$\mathcal{L}_{A} = -\mu v_{\Phi} h^{0} H^{0} \Rightarrow \delta M_{HA} \approx 2M_{H^{0}} \frac{v_{\Delta}^{2}}{v_{0}^{2}} \frac{M_{H^{0}}^{2}}{M_{H^{0}}^{2} - m_{h^{0}}^{2}}$$

Δ - $\overline{\Delta}$ Oscillation

• Initial $\Delta = H^0 + i A^0$ evolves as

$$\begin{aligned} |\Delta(t)\rangle &= g_{+}(t)|\Delta\rangle + g_{-}(t)|\overline{\Delta}\rangle \qquad [\Gamma = \Gamma_{H^{0}} = \Gamma_{A^{0}}] \\ g_{\pm}(t) &= \frac{1}{2}e^{-\Gamma t/2} \left(e^{iM_{H^{0}}t} \pm e^{iM_{A^{0}}t}\right) \end{aligned}$$

• Probabilities of \varDelta going to \varDelta or $\overline{\varDelta}$ are

$$\chi_{\pm} \equiv \frac{\int_0^\infty dt |g_{\pm}(t)|^2}{\int_0^\infty dt |g_{\pm}(t)|^2 + \int_0^\infty dt |g_{\pm}(t)|^2}$$

Same-Sign Tetra-Leptons

Lepton number violating processes:

$$\begin{array}{ccc} pp \rightarrow \Delta^0 \bar{\Delta}^0 \Rightarrow \Delta^0 \Delta^0 & \rightarrow H^+ H^+ 2 W^- \rightarrow H^{++} H^{++} 4 W^- \\ \Delta^+ \bar{\Delta}^0 \Rightarrow \Delta^+ \Delta^0 \rightarrow H^{++} H^+ 2 W^- \rightarrow H^{++} H^{++} 3 W^- \end{array}$$

Production cross-section:

$$\begin{split} \sigma\left(4\ell^{\pm} + 3W^{\mp^*}\right) &= \sigma\left(pp \to H^{\pm}H^0 + H^{\pm}A^0\right) \left[\frac{x_{HA}^2}{1 + x_{HA}^2}\right] \mathrm{BF}(H^0/A^0 \to H^{\pm}W^{\mp^*}) \\ &\times \left[\mathrm{BF}(H^{\pm} \to H^{\pm\pm}W^{\mp^*})\right]^2 \left[\mathrm{BF}(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})\right]^2; \\ \sigma\left(4\ell^{\pm} + 4W^{\mp^*}\right) &= \sigma\left(pp \to H^0A^0\right) \left[\frac{2 + x_{HA}^2}{1 + x_{HA}^2}\frac{x_{HA}^2}{1 + x_{HA}^2}\right] \mathrm{BF}(H^0 \to H^{\pm}W^{\mp^*}) \mathrm{BF}(A^0 \to H^{\pm}W^{\mp^*}) \\ &\times \left[\mathrm{BF}(H^{\pm} \to H^{\pm\pm}W^{\mp^*})\right]^2 \left[\mathrm{BF}(H^{\pm\pm} \to \ell^{\pm}\ell^{\pm})\right]^2. \end{split}$$

Same-Sign Tetra-Leptons

- Is this observable?
 - i) H⁺⁺ is the lightest and $f_{\alpha\beta} > \xi$.
 - ii) ΔM sufficiently large to allow $\Delta^0 \rightarrow H^+ W^- \rightarrow H^{++} 2W^-$. iii) Sizable oscillation parameter: x~1.

$$\delta M_{HA} \sim 2 \frac{v_{\Delta}^2}{v_{\Phi}^2} M_{H^0} \qquad \Gamma_{H^0/A^0} \sim \frac{G_F^2 \Delta M^5}{\pi^3}$$
$$\sim 10^{-4} \text{GeV}, \quad \Delta M \sim 2 \text{GeV} \quad \Rightarrow \delta M_{HA} \sim \Gamma_{H^0/A^0} \sim 10^{-11} \text{GeV}$$

 v_{Δ}

Triplet decay channels

H^0	A^0	H^+	H^{++}
$\rightarrow t\bar{t}$	$\rightarrow t\bar{t}$	$\rightarrow t\bar{b}$	$\rightarrow \ell^+ \ell^+$
$\rightarrow b\bar{b}$	$\rightarrow b\bar{b}$	$\rightarrow \ell^+ \nu$	$\rightarrow W^{+*}W^{+*}$
$\rightarrow \nu \bar{\nu}$	$\rightarrow \nu \bar{\nu}$	$\rightarrow W^+Z$	
$\rightarrow ZZ$	$\rightarrow Zh^0$	$\rightarrow W^+ h^0$	
$\rightarrow h^0 h^0$	$\rightarrow H^{\pm}W^{\mp^*}$	$\rightarrow H^{++}W^{-*}$	
$\rightarrow H^{\pm}W^{\mp^*}$			

Maximizing the branching fraction

SS4L cross-section

SS4L production including the oscillation factor:

LHC8

LHC14

 $M_{H^{\pm\pm}} = 400 \text{GeV}$

Benchmark point:

 $v_{A}=7x10^{-5}$ GeV, $\Delta M=1.5$ GeV.

Event numbers

Final State	$\sigma/{\rm fb}~(8~{\rm TeV})$	$\sigma/{\rm fb}~(14~{\rm TeV})$
H^+H^0	0.761	2.931
H^+A^0	0.761	2.931
H^-H^0	0.275	1.209
H^-A^0	0.275	1.209
$H^0 A^0$	1.014	4.322

No background Lepton selection cuts only

		Pre-selection	Selection
1 - 01 - 1	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC8-NH)	4	3
$15 f b^{-1}$	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC8-IH)	9	8
$100 f h^{-1}$	$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\pm}$ (LHC14-NH)	110	94
10070	$\ell^\pm\ell^\pm\ell^\pm\ell^\pm$ (LHC14-IH)	240	210

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Mass reconstruction

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Conclusion I

- Type II seesaw may show a novel signature of same-sign tetra-leptons due to the mixing between two neutral (triplet) bosons.
- LHC14 with 100/bf could see more than 10 such signals for the triplet Higgs boson lighter than 600-700 GeV.
- The tiny VEV and mass gaps of the triplet may be measured through the oscillation phenomena.

SM boson-to-diphoton

- I-loop process sensitive to New Physics.
- A large deviation in the current data.
- Its precision data is important to constrain NP.

► H⁺⁺ & H⁺ contribution:

•
$$g_{H^+H^+}^h = \underbrace{\frac{\lambda_4}{2}}_{H^+} \underbrace{\frac{v_0^2}{M_{H^+}^2}}_{2},$$

• $g_{H^{++}H^{++}}^h = \underbrace{\frac{\lambda_4 - \lambda_5}{2}}_{2} \frac{v_0^2}{M_{H^+}^2},$

Arhrib, et.al., 1112.5453 Kanemura, Yagyu, 1201.6287 Akeryod, Moretti, 1206.0535

SM boson-to-diphoton

- Sizable H⁺⁺/H⁺ contribution if light enough (< 250 GeV).</p>
- CMS limit does not apply if $BR(H^{++} \rightarrow I^+I^+)$ is not 100%.
- Calculate possible deviation by Higgs triplet combined with conditions from EWPD, vacuum stability and perturbativity.

 $R_{\gamma\gamma} = \Gamma(h \to \gamma\gamma) / \Gamma(h \to \gamma\gamma)_{\rm SM}$

 $m_{H^{++}} = 100 \text{GeV}$

 $m_{H^{++}} = 150 \text{GeV}$

 $m_{H^{++}} = 200 \text{GeV}$

Vacuum stability & perturbativity

Scalar sector of type II seesaw:

$$V(\Phi, \Delta) = m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \tau_i \Phi) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c.$$

- Vacuum stability of the SM boson changes due to its couplings to the Higgs triplet.
- Triplet self coupling (λ_2) tends to diverge rapidly.
- Strong constraints on $\lambda_{2,3,4,5}$.
- Take $\lambda_1 = 0.13$ and $\mu \ll v_{\Phi}$.

Vacuum stability & perturbativity

Demand the absolute vacuum stability condition.

- $\lambda_1 > 0$, Arhrib, et.al., 1105.1925
- $\lambda_2 > 0$,

•
$$\lambda_2 + \frac{1}{2}\lambda_3 > 0$$

•
$$\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1 \lambda_2} > 0$$
,

- $\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1(\lambda_2 + \frac{1}{2}\lambda_3)} > 0.$
- Perturbativity: $|\lambda_i| \leq \sqrt{4\pi}$.

Vacuum stability & perturbativity

Use I-loop RGE:

Chao, Zhang, 0611323 Schmidt, 07053841

$$\begin{split} 16\pi^2 \frac{d\lambda_1}{dt} &= 24\lambda_1^2 + \lambda_1(-9g_2^2 - 3g'^2 + 12y_t^2) + \frac{3}{4}g_2^4 + \frac{3}{8}(g'^2 + g_2^2)^2 \\ &- \frac{6y_t^4}{4} + 3\lambda_4^2 + 2\lambda_5^2 \\ 16\pi^2 \frac{d\lambda_2}{dt} &= \lambda_2(-12g'^2 - 24g_2^2) + 6g'^4 + 9g_2^4 + 12g'^2g_2^2 + 28\lambda_2^2 \\ &+ \frac{8\lambda_2\lambda_3 + 4\lambda_3^2 + 2\lambda_4^2 + 2\lambda_5^2}{4} \\ 16\pi^2 \frac{d\lambda_3}{dt} &= \lambda_3(-12g'^2 - 24g_2^2) + 6g_2^4 - 24g'^2g_2^2 + 6\lambda_3^2 \\ &+ 24\lambda_2\lambda_3 - 4\lambda_5^2 \\ 16\pi^2 \frac{d\lambda_4}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + \frac{9}{5}g'^4 + 6g_2^4 + \lambda_4(12\lambda_1 \\ &+ \frac{16\lambda_2 + 4\lambda_3 + 4\lambda_4 + 6y_t^2) + 8\lambda_5^2}{4} \\ 16\pi^2 \frac{d\lambda_5}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + 6g'^2g_2^2 + \lambda_5(4\lambda_1 + 4\lambda_2 \\ &- 4\lambda_3 + 8\lambda_4 + 6y_t^2), \end{split}$$

RGE running

An example

Cut-off scale 10¹⁹ GeV

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Cut-off scale 10¹⁰ GeV

Cut-off scale 10⁵ GeV

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Allowed ranges

	$10^5 { m ~GeV}$	$10^{10} {\rm ~GeV}$	$10^{19} { m GeV}$
λ_2	(0,1)	(0, 0.5)	(0, 0.25)
λ_3	(-2.0, 2.4)	(-1.0, 1.25)	(-0.55, 0.62)
λ_4	(-0.5, 1.7)	(-0.1, 0.9)	(0, 0.5)
λ_5	(-1.5, 1.5)	(-0.7, 0.7)	(-0.4, 0.4)

Triplet contribution to S,T & U:

Lavoura, Li, 9309262

$$S = -\frac{1}{3\pi} \ln \frac{m_{+1}^2}{m_{-1}^2} - \frac{2}{\pi} \sum_{T_3 = -1}^{+1} (T_3 - Qs_W^2)^2 \xi \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3}^2}{m_Z^2}\right)$$
$$T = \frac{1}{16\pi c_W^2 s_W^2} \sum_{T_3 = -1}^{+1} (2 - T_3(T_3 - 1)) \eta \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3 - 1}^2}{m_Z^2}\right)$$
$$U = \frac{1}{6\pi} \ln \frac{m_0^4}{m_{+1}^2 m_{-1}^2} + \frac{1}{\pi} \sum_{T_3 = -1}^{+1} \left[2(T_3 - Qs_W^2)^2 \xi \left(\frac{m_{T_3}^2}{m_Z^2}, \frac{m_{T_3}^2}{m_Z^2}\right) - (2 - T_3(T_3 - 1)) \xi \left(\frac{m_{T_3}^2}{m_W^2}, \frac{m_{T_3}^2}{m_W^2}\right)\right]$$
$$m_{+1,0,-1} = M_{H^{++},H^+,H^0}$$

• Tree-level contribution is neglected ($\mu \rightarrow 0$).

Most recent STU fit:

Baak, et.al., 1209.2716

 $S_{\text{best fit}} = 0.03, \quad \sigma_S = 0.10$ $T_{\text{best fit}} = 0.05, \quad \sigma_T = 0.12$ $U_{\text{best fit}} = 0.03, \quad \sigma_U = 0.10$

 $\rho_{ST} = 0.89, \quad \rho_{SU} = -0.54, \quad \rho_{TU} = -0.83$

It strongly constrains the mass splitting.

EWPD

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Constrained λ_5

- EWPD limits $|\Delta M| < \sim 40$ GeV for $\xi << 10^{-2}$.
- Strong constraints on λ_5 for small triplet mass:

 $\lambda_5 = (-0.1, 0.4), (-0.2, 0.6), (-0.35, 0.7)$

 $M_{H^{++}} = 100, 150, \text{ and } 200 \text{ GeV},$

Combined results for 10¹⁹ GeV

Combined results for 10¹⁰ GeV

57

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels

Combined results for 10⁵ GeV

EJChun@KIAS 2012-12-07 Brussels Type II Seesaw at LHC

Conclusion II

• EWPD constrains tightly the triplet mass splitting: $|\Delta M| < 40$ GeV.

- > Vacuum stability and perturbativity put strong bounds on the Higgs couplings, roughly $\lambda_i < \sim 1$.
- SM boson-to-diphoton rate can be enhanced up to 100%
 ~ 50% for the triplet mass 100 GeV depending on the cut-off scale.
- The SM boson precision data will severely constrain the triplet boson parameter space.

Thank you

Type II Seesaw at LHC EJChun@KIAS 2012-12-07 Brussels