

The Role of the Dilaton in Composite Higgs models

Brando Bellazzini

University of Padova, SISSA, & INFN

work in progress with R. Franceschini, L. Martucci and R. Torre

Brussels, June 12th 2013

BSM ON 2013

COMPOSITE HIGGS MODELS

COMPOSITE HIGGS MODELS

COMPOSITE HIGGS MODELS

EFT FOR THE DILATON

BB, Csaki, Hubisz, Serra & Terning 1209.3299 Chacko & Mishra 1209.3022 Goldberger, Grinstein & Skiba 0708.1463 Hubisz, Csaki & Lee 0705.3844

Fields organized w/ Lorentz + scale-dimension

Fields organized w/ Lorentz + scale-dimension

Lorentz scalar

$$\mathcal{O}(x) \longrightarrow \mathcal{O}'(x') = e^{b(x')\frac{\Delta}{2}} \cdot \mathcal{O}(x(x'))$$

Lagrangian exactly marginal

 $S_{CFT} = \sum_{\mathcal{O}} \int d^4 x \, \mathcal{O}(x)$

Lagrangian exactly marginal

$$S_{CFT} = \sum_{\mathcal{O}} \int d^4 x \, \mathcal{O}(x)$$
Spacetime sym
$$\left| \frac{\partial x'}{\partial x} \right| = e^{-2b(x')}$$

Lagrangian exactly marginal $S_{CFT} = \sum_{\mathcal{O}} \int d^4 x \, \mathcal{O}(x)$ $\sum_{\text{spacetime sym}} \left| \frac{\partial x'}{\partial x} \right| = e^{-2b(x')}$

Invariant correlations: $\langle \mathcal{O}'(x_1')\mathcal{O}'(x_2')\dots\mathcal{O}'(x_n')\rangle = \langle \mathcal{O}(x_1')\mathcal{O}(x_2')\dots\mathcal{O}(x_n')\rangle$

Invariant correlations: $\langle \mathcal{O}'(x_1')\mathcal{O}'(x_2')\dots\mathcal{O}'(x_n')\rangle = \langle \mathcal{O}(x_1')\mathcal{O}(x_2')\dots\mathcal{O}(x_n')\rangle$

Example:

$$e^{-2\alpha\Delta}\langle \mathcal{O}(e^{-\alpha}x')\mathcal{O}(e^{-\alpha}y')\rangle = \langle \mathcal{O}(x')\mathcal{O}(y')\rangle \implies \langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{const}{|x-y|^{2\Delta}}$$

CFT
$$\langle \mathcal{O}(x) \rangle = f^{\Delta}$$
 Poincare'

dilaton restores conformality

 $\mathcal{L}_{IR} \supset \mathcal{O}(x) \longrightarrow \mathcal{O}(x) \times \chi^{4-\Delta_{\mathcal{O}}} \qquad \text{dilaton couples to non-marginality}$ $\mathcal{L}_{IR} \supset \mathcal{O}(x) \left[1 + (4-\Delta)\frac{\sigma}{f} + \dots \right] = \mathcal{O}(x) + \frac{\sigma}{f}\partial_{\mu}D^{\mu} + \dots$

dilaton restores conformality

$$\mathcal{L}_{IR} \supset \mathcal{O}(x) \longrightarrow \mathcal{O}(x) \times \chi^{4-\Delta_{\mathcal{O}}} \quad \text{dilaton couples to non-marginality}$$
$$\mathcal{L}_{IR} \supset \mathcal{O}(x) \left[1 + (4-\Delta)\frac{\sigma}{f} + \dots \right] = \mathcal{O}(x) + \frac{\sigma}{f}\partial_{\mu}D^{\mu} + \dots \quad \frac{\sigma}{f}T^{\mu}_{\mu}$$

dilaton restores conformality

$$\mathcal{L}_{IR} \supset \mathcal{O}(x) \longrightarrow \mathcal{O}(x) \times \chi^{4-\Delta_{\mathcal{O}}} \qquad \text{dilaton couples to non-marginality}$$
$$\mathcal{L}_{IR} \supset \mathcal{O}(x) \left[1 + (4-\Delta)\frac{\sigma}{f} + \dots \right] = \mathcal{O}(x) + \frac{\sigma}{f}\partial_{\mu}D^{\mu} + \dots \qquad \frac{\sigma}{f}T^{\mu}_{\mu}$$

like the SM-scalar: it couples to the mass $\frac{1}{f}\sigma T^{\mu}_{\mu} \neq \frac{v}{f}\sigma \left[2m_W^2 + m_\psi\psi\psi\dots\right]$

overall rescaling

dilaton restores conformality

like the SM-scalar: it couples to the mass $\frac{1}{f}\sigma T^{\mu}_{\mu} = \frac{v}{f}\sigma \left[2m_W^2 W^2 + m_\psi\psi\psi\dots\right]$

V overall rescaling Higgs-like Dilaton? SO(4)/SO(3)+ dilaton with $v\sim f$ within 10%

BB, Csaki, Hubisz, Serra, Terning 1209.3299; Chacko, Franceschini, Mishra 1209.3259

FERMION COUPLINGS

FERMION COUPLINGS

integrate out the CFT: $\sim y_L y_R v \psi_L \psi_R$ compensate: $\sim y_L y_R v \psi_L \psi_R \times \chi^{1+\gamma_L+\gamma_R}$ $\left(\mathcal{L} \supset m_{\psi} \psi_L \psi_R \left[1 + \frac{\sigma}{f} (1 + \gamma_L + \gamma_R) \right] \right)$

 $\mathcal{L}_{mix} = y_L \psi_L \Theta_R + y_R \psi_R \Theta_L$

$$\mathcal{L}_{mix} = y_L \psi_L \Theta_R + y_R \psi_R \Theta_L$$

 $y_R(f) f$

 $\left(\frac{J}{\Lambda}\right)$

compensate:

$$f \longrightarrow f\chi = f e^{\sigma/f}$$
$$\mathcal{L} \supset m_{\psi} \psi_L \psi_R \left[1 + \frac{\sigma}{f} (1 + \gamma_L + \gamma_R) \right]$$

$$\mathcal{L}_{mix} = y_L \psi_L \Theta_R + y_R \psi_R \Theta_L$$

compensate:
$$f \longrightarrow f\chi = f e^{\sigma/f}$$

 $\mathcal{L} \supset m_{\psi} \psi_L \psi_R \left[1 + \frac{\sigma}{f} (1 + \gamma_L + \gamma_R) \right]$

gamma positive for light fermions (gamma~0.1 for taus)

PHOTON AND GLUON COUPLINGS

PHOTON AND GLUON COUPLINGS

PHOTON AND GLUON COUPLINGS

DILATON COUPLINGS: SUMMARY

ILATON COUPLINGS: SUMMARY

example w/ composite top-right for Higgs-like Dilaton: $\frac{v}{f}(\beta_{UV}^{CFT} + \beta_{SM}^{\gamma} - \beta_{t_R,W_L}^{\gamma})$

HIGGS-LIKE DILATON: FITTING DATA

scale dim. can be suitably chosen: $\Delta_{\pi} = 0$ "angles"

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

$$\mathcal{L}_{CFT+G}^{(2)} = \frac{1}{2} \left[\left(\frac{f_{\pi}^2}{f^2} \right) \chi^2 \left(\partial_{\mu} \pi^{\hat{a}} \partial_{\mu} \pi^{\hat{b}} g_{\hat{a}\hat{b}}(\pi) \right) + \frac{1}{2} (\partial \chi)^2 \right]$$

non-compact (dilations): no scale
 singular at the apex: cut-off=0

••• all amplitudes vanish!!

$$A(\pi\pi \to hh) \sim \left(\frac{s}{f_{\pi}^2} - \frac{s}{f^2}\right) \to 0$$

$$A(\pi\pi\to\sigma\sigma)\to 0$$

••• all amplitudes vanish!!

$$SO(n+1)/SO(n) = S_n \longrightarrow A(\pi\pi \to \pi\pi) \sim \frac{s}{f_\pi^2} - \frac{s}{f^2}$$

Limit:
$$f = f_{\pi}$$

 $A(\pi\pi \to \pi\pi) \sim \left(\frac{s}{f_{\pi}^2} - \frac{s}{f^2}\right) \to 0$
 $A(\pi\pi \to hh) \sim \left(\frac{s}{f_{\pi}^2} - \frac{s}{f^2}\right) \to 0$
 $A(\pi\pi \to \sigma\sigma) \to 0$
... all amplitudes vanish!!

E.g.: the Higgs-like dilaton SO(4)/SO(3)? $(f_{\pi} \equiv) v = f$?

symmetry or tuning (or dynamics)?is it actually weakly coupled?

 $\Lambda \sim 4\pi f? \quad \Lambda \gg 4\pi f?$

 $|\Phi|^2 = f_\pi^2$

all amplitudes are trivially vanishing (at this order)

CCWZ notation: $e^{-i\pi}\partial_{\mu}e^{i\pi} = id^{\hat{a}}_{\mu}T^{\hat{a}} + iE^{a}_{\mu}T^{a}$

CCWZ notation:
$$e^{-i\pi}\partial_{\mu}e^{i\pi} = id^{\hat{a}}_{\mu}T^{\hat{a}} + iE^{a}_{\mu}T^{a}$$

· · · · · · · · · · · · · · · · · · ·	
	\sim
only pions:	
only dilaton:	
mixed term:	

CCWZ notation:
$$e^{-i\pi}\partial_{\mu}e^{i\pi} = id_{\mu}^{\hat{a}}T^{\hat{a}} + iE_{\mu}^{a}T^{a}$$

only pions: $(\text{Tr}[d_{\mu}d^{\mu}])^{2}$, $\text{Tr}[d_{\mu}d^{\nu}]\text{Tr}[d_{\mu}d^{\nu}]$, $\text{Tr}[E_{\mu\nu}E^{\mu\nu}]$
only dilaton:
mixed term:

CCWZ notation:
$$e^{-i\pi}\partial_{\mu}e^{i\pi} = id^{\hat{a}}_{\mu}T^{\hat{a}} + iE^{a}_{\mu}T^{a}$$

only pions: $\left(\operatorname{Tr}[d_{\mu}d^{\mu}]\right)^{2}$, $\operatorname{Tr}[d_{\mu}d^{\nu}]\operatorname{Tr}[d_{\mu}d^{\nu}]$, $\operatorname{Tr}[E_{\mu\nu}E^{\mu\nu}]$

only dilaton:
$$a \left[(\partial_{\mu}\sigma)^4 + 2(\Box\sigma)(\partial_{\mu}\sigma)^2 \right] + b \left[(\partial_{\mu}\sigma)^2 + \Box\sigma \right]^2$$

a-anomaly Komargodski-Schwimmer

by e.o.m enters in pi-pi scattering

mixed term:
HIGHER ORDERS?

CCWZ notation:
$$e^{-i\pi}\partial_{\mu}e^{i\pi} = id^{\hat{a}}_{\mu}T^{\hat{a}} + iE^{a}_{\mu}T^{a}$$

only pions: $\left(\operatorname{Tr}[d_{\mu}d^{\mu}]\right)^{2}$, $\operatorname{Tr}[d_{\mu}d^{\nu}]\operatorname{Tr}[d_{\mu}d^{\nu}]$, $\operatorname{Tr}[E_{\mu\nu}E^{\mu\nu}]$

only dilaton:
$$\boldsymbol{a} \left[(\partial_{\mu}\sigma)^4 + 2(\Box\sigma)(\partial_{\mu}\sigma)^2 \right] + \boldsymbol{b} \left[(\partial_{\mu}\sigma)^2 + \Box\sigma \right]^2$$

a-anomaly Komargodski-Schwimmer

by e.o.m enters in pi-pi scattering

mixed term: $c \left[(\partial_{\alpha} \sigma)^2 + \Box \sigma \right] \operatorname{Tr}[d_{\nu} d^{\nu}] + d \left[\eta_{\mu\nu} ((\partial_{\alpha} \sigma)^2 - \Box \sigma) + 4 (\partial_{\mu} \partial_{\nu} \sigma - \partial_{\mu} \sigma \partial_{\nu} \sigma) \right] \operatorname{Tr}[d^{\mu} d^{\nu}]$

HIGHER ORDERS?

CCWZ notation:
$$e^{-i\pi}\partial_{\mu}e^{i\pi} = id_{\mu}^{\hat{a}}T^{\hat{a}} + iE_{\mu}^{a}T^{a}$$

only pions: $(\operatorname{Tr}[d_{\mu}d^{\mu}])^{2}$, $\operatorname{Tr}[d_{\mu}d^{\nu}]\operatorname{Tr}[d_{\mu}d^{\nu}]$, $\operatorname{Tr}[E_{\mu\nu}E^{\mu\nu}]$
only dilaton: $a \left[(\partial_{\mu}\sigma)^{4} + 2(\Box\sigma)(\partial_{\mu}\sigma)^{2}\right] + b \left[(\partial_{\mu}\sigma)^{2} + \Box\sigma\right]^{2}$
a-anomaly Komargodski-Schwimmer by e.o.m enters in pi-pi scattering
mixed term: $c \left[(\partial_{\alpha}\sigma)^{2} + \Box\sigma\right]\operatorname{Tr}[d_{\nu}d^{\nu}] + d \left[\eta_{\mu\nu}((\partial_{\alpha}\sigma)^{2} - \Box\sigma) + 4(\partial_{\mu}\partial_{\nu}\sigma - \partial_{\mu}\sigma\partial_{\nu}\sigma)\right]\operatorname{Tr}[d^{\mu}d^{\mu}]$
no reasons to expect $A(\pi\pi \to \pi\pi) \sim E^{4}$

plane: invariant ISO(n+1)=SO(n+1)+translations

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} \qquad \varphi^{a} \to \varphi^{a} + c^{a}$$

plane

plane: invariant ISO(n+1)=SO(n+1)+translations

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} \qquad \varphi^{a} \to \varphi^{a} + c^{a}$$

accidental ISO x CFT spoiled @ $O(p^4)$

(true sym. only SO x CFT)

plane: invariant ISO(n+1)=SO(n+1)+translations

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} \qquad \varphi^{a} \to \varphi^{a} + c^{a}$$

accidental ISO x CFT spoiled @ $O(p^4)$

(true sym. only SO x CFT)

promote it to a true UV symmetry?

plane: invariant ISO(n+1)=SO(n+1)+translations

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} \qquad \varphi^{a} \to \varphi^{a} + c^{a}$$

accidental ISO x CFT spoiled @ $O(p^4)$

(true sym. only SO x CFT)

promote it to a true UV symmetry?

step I) $\mathcal{L}^{(4)} = \mathbf{a}(\partial_{\mu}\varphi^{a})^{4} + \mathbf{b}(\partial_{\mu}\varphi^{i}\partial_{\nu}\varphi^{i})^{2} + \dots$

step 2) make it marginal: divide by~ $\varphi^a \Box \varphi^a$?

plane: invariant ISO(n+1)=SO(n+1)+translations

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} \qquad \varphi^{a} \to \varphi^{a} + c^{a}$$

accidental ISO x CFT spoiled @ O(p^4)

(true sym. only SO x CFT)

promote it to a true UV symmetry?

step I) $\mathcal{L}^{(4)} = \mathbf{a}(\partial_{\mu}\varphi^{a})^{4} + \mathbf{b}(\partial_{\mu}\varphi^{i}\partial_{\nu}\varphi^{i})^{2} + \dots$

step 2) make it marginal: divide by~ $\varphi^a \Box \varphi^a$?

 $\mathcal{L}^{(4)} \sim \frac{a}{\varphi^a \Box \varphi^a} (\partial_\mu \varphi^a)^4 + \frac{b}{(\ldots)} (\partial_\mu \varphi^i \partial_\nu \varphi^i)^2 + \dots \frac{\text{non-locality forced by}}{\text{translations+dilations!}}$

ACCIDENT VS SYMMETRY

ACCIDENT VS SYMMETRY

ACCIDENT VS SYMMETRY

barring non-locality (=no extra massless fields)

HIERARCHY PROBLEM?

ISO breakings new scale breaking CFT $\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} + \epsilon_{I \ SO} \times M_{C \ FT}^{2} \varphi^{a} \varphi^{a} + \dots$

the relevant operator is small by symmetry

HIERARCHY PROBLEM?

but the whole potential is suppressed by translations

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi^{a} \partial_{\mu} \varphi^{a} + \epsilon_{ISO} \cdot \lambda^{2} \cdot \left(\frac{M_{CFT}^{2}}{4\lambda^{2}} - \varphi^{a} \varphi^{a} \right)^{2} + \dots$$

HIERARCHY PROBLEM?

$$\begin{aligned} f^2 &= \frac{M_{C \not F T}^2}{4\lambda^2} \qquad m_{\sigma}^2 \propto \epsilon f^2 \qquad \Delta = \frac{f^2}{v^2} \gg 1 \\ \end{aligned} \end{aligned}$$
 generically big tuning!

spurions carry both G-indexes and scale dimension

Integrate-out CFT (all orders)

Integrate-out CFT (all orders) $\mathcal{L}_{eff}^{gauge} = \frac{1}{2} \left[\Pi_0(p) \operatorname{Tr}[A_\mu A_\mu] + \Pi_i(p) \Phi^T A_\mu A_\mu \Phi \right] P_{\mu\nu}^{\perp}$

Integrate-out CFT (all orders) $\mathcal{L}_{eff}^{gauge} = \frac{1}{2} \left[\Pi_0(p) \operatorname{Tr}[A_\mu A_\mu] + \Pi_i(p) \Phi^T A_\mu A_\mu \Phi \right] P_{\mu\nu}^{\perp}$ form factors

I-loop of elem. fields: Coleman-Weinberg!

$$V(\pi, \chi) = \sum_{i} \int \frac{d^4 p}{(2\pi)^4} \log \Pi_i(p^2, \Phi)$$

Integrate-out CFT (all orders) $\mathcal{L}_{eff}^{gauge} = \frac{1}{2} \left[\Pi_0(p) \operatorname{Tr}[A_\mu A_\mu] + \Pi_i(p) \Phi^T A_\mu A_\mu \Phi \right] P_{\mu\nu}^{\perp}$ form factors

I-loop of elem. fields: Coleman-Weinberg!

$$V(\pi, \chi) = \sum_{i} \int \frac{d^4p}{(2\pi)^4} \log \Pi_i(p^2, \Phi)$$

dress with the dilaton

$$V = \left(\frac{\chi}{f}\right)^4 \left[\kappa + y^2 \left(\frac{\chi}{f}\right)^{2\gamma} \left(\Lambda_1 + A\sin^2 h + B\sin^4 h\right)\right] = \chi^4 F(y(\chi), \sin h)$$

 $y(\mu) = y(M) \left(\frac{\mu}{M}\right)^{\gamma}$

dress with the dilaton

$$V = \left(\frac{\chi}{f}\right)^4 \left[\kappa + y^2 \left(\frac{\chi}{f}\right)^{2\gamma} \left(\Lambda_1 + A\sin^2 h + B\sin^4 h\right)\right] = \chi^4 F(y(\chi), \sin h)$$

dress with the dilaton

$$V = \left(\frac{\chi}{f}\right)^4 \left[\kappa + y^2 \left(\frac{\chi}{f}\right)^{2\gamma} \left(\Lambda_1 + A\sin^2 h + B\sin^4 h\right)\right] = \chi^4 F(y(\chi), \sin h)$$

 $y(\mu) = y(M) \left(\frac{\mu}{M}\right)^{\gamma}$

5 parameters: trade for $m_\sigma \ m_h \ v/f_\pi \ f \ m_t$

Predictions (e.g. amplitudes) all in terms of physical quantities

DILATON DECAYS

CONCLUSIONS

- A new scalar has been discovered: it can well be a pNGB as in CHM
- The EFT for a Composite Higgs+Dilaton is quite interesting and predictive
 - **★** Funny geometrical structure (btw, is the cone homotopy trivial?) $\pi_1(Cone)$
 - ★ f=fpi by symmetry ISO(n), but weakly coupled
 - ★ Clear Dilaton BRs
 - Curious WW-scattering (can we see E^4 behavior? strong vs weak dynamics, dynamics vs symmetry)

singularity

- ★ Higgs and Dilaton potential are related
- ★ Can we distinguish it from another heavy H or pNGB? (not discussed)
- When f<fpi the curvature is negative and singular: does it imply ghost? (not discussed)

THANK YOU!

backup slides

THE RS STORY

THE RS STORY

$$L_{eff} = -\Lambda_{(5)}L^{5}(\partial\chi)^{2}/2 - \chi^{4}\left(-\Lambda_{(5)}L^{5} + V_{IR}L^{4}\right)$$

$$\mathsf{NDA:} \begin{cases} \delta a_{bulk} = -\Lambda_{(5)} L^5 \sim \frac{12^{5/2}}{24\pi^3} = \mathcal{O}(1) \\ \delta a_{IR} = V_{IR} L^4 = V_{IR} \left(\frac{L}{z_{IR}}\right)^4 z_{IR}^4 \sim 16\pi^2 \end{cases}$$

Stabilization: Goldberger and Wise

I) assume the RS tuning: vanishing/small quartic

Stabilization: Goldberger and Wise

I) assume the RS tuning: vanishing/small quartic

2) add a bulk scalar with small mass $\phi \iff \delta \mathcal{L}_{CFT} = \lambda \mathcal{O} \qquad m^2 L^2 = \Delta(\Delta - 4) \simeq 4\epsilon \ll 1$ $V_{eff} = \frac{1}{z_{IR}^4} \left[\delta a_{\epsilon=0} + \delta_1 \epsilon \log(L/z_{IR}) \right] = \chi^4 F(\lambda(\chi))$

Stabilization: Goldberger and Wise

- I) assume the RS tuning: vanishing/small quartic
- 2) add a bulk scalar with small mass $\phi \iff \delta \mathcal{L}_{CFT} = \lambda \mathcal{O} \qquad m^2 L^2 = \Delta(\Delta 4) \simeq 4\epsilon \ll 1$ $V_{eff} = \frac{1}{z_{IR}^4} \left[\delta a_{\epsilon=0} + \delta_1 \epsilon \log(L/z_{IR}) \right] = \chi^4 F(\lambda(\chi))$ 3) VEV: $f = \frac{1}{L} \operatorname{Exp} \left[-\frac{\delta a}{\epsilon \delta_1} \right] \qquad \text{but FT} = \frac{\delta a_{NDA}}{\mathcal{O}(\epsilon)} \gg 1$

Stabilization: Goldberger and Wise

- I) assume the RS tuning: vanishing/small quartic
- 2) add a bulk scalar with small mass $\phi \iff \delta \mathcal{L}_{CFT} = \lambda \mathcal{O} \qquad m^2 L^2 = \Delta(\Delta 4) \simeq 4\epsilon \ll 1$ $V_{eff} = \frac{1}{z_{IR}^4} \left[\delta a_{\epsilon=0} + \delta_1 \epsilon \log(L/z_{IR}) \right] = \chi^4 F(\lambda(\chi))$ 3) VEV: $f = \frac{1}{L} \operatorname{Exp} \left[-\frac{\delta a}{\epsilon \delta_1} \right]$ but $\operatorname{FT} = \frac{\delta a_{NDA}}{\mathcal{O}(\epsilon)} \gg 1$ from large K.T. $\frac{v}{f_{RS}} \sim \frac{v}{m_{KK}N} \ll 1$ not a good candidate

scaling dim.

scaling dim.

After EWSB: only the *diagonal* symmetry survives $h \to (1 + \epsilon)h(x(x')) + \epsilon v$ non-linearly like a Goldstone boson

After EWSB: only the *diagonal* symmetry survives

 $h \rightarrow (1 + \epsilon)h(x(x')) + \epsilon v$ non-linearly like a Goldstone boson

w/o the Higgs (no sym.)
$$S_{IR} = \int d^4x \; [m_t \bar{t}_L t_R + \ldots] \rightarrow \int d^4x \; [m_t (1 - \epsilon) \bar{t}_L t_R + \ldots]$$

After EWSB: only the *diagonal* symmetry survives $h \to (1 + \epsilon)h(x(x')) + \epsilon v$ non-linearly like a Goldstone boson

w/o the Higgs (no sym.) $S_{IR} = \int d^4x \; [m_t \bar{t}_L t_R + \ldots] \rightarrow \int d^4x \; [m_t (1 - \epsilon) \bar{t}_L t_R + \ldots]$

w/ the Higgs
$$S_{IR} = \int d^4x \left[m_t \overline{t}_L t_R + \frac{h}{v} (m_t \overline{t}_L t_R) + \ldots \right]$$

After EWSB: only the *diagonal* symmetry survives $h \to (1 + \epsilon)h(x(x')) + \epsilon v$ non-linearly like a Goldstone boson

w/o the Higgs (no sym.)
$$S_{IR} = \int d^4x \ [m_t \bar{t}_L t_R + \ldots] \rightarrow \int d^4x \ [m_t (1 - \epsilon) \bar{t}_L t_R + \ldots]$$

w/ the Higgs $S_{IR} = \int d^4x \ [m_t \bar{t}_L t_R + \frac{h}{v} (m_t \bar{t}_L t_R) + \ldots]$
 $M_t (\frac{h}{v} + \epsilon) \bar{t}_L t_R$
sym.is restored.

ſ		gau	ge		,
		SU(3)	SU(2)	$\mid U(1)$	$U(1)_R$
	\overline{Q}	3	2	1/3	1
	L	1	2	-1	-3
	\overline{U}	$\overline{3}$	1	-4/3	-8
	\overline{D}	$\overline{3}$	1	2/3	4

 $g_i(\Lambda_i) \approx 4\pi$

 $\Lambda_3 \gg \Lambda_2$

3 classical flat directions: $Q\bar{D}L \quad Q\bar{U}L \quad \det \bar{Q}Q$

(gau			
	SU(3)	SU(2)	$\mid U(1)$	$U(1)_R$
\overline{Q}	3	2	1/3	1
L	1	2	-1	-3
\overline{U}	$\overline{3}$	1	-4/3	-8
\overline{D}	$\overline{3}$	1	2/3	4
i.				

 $g_i(\Lambda_i) \approx 4\pi$

 $\Lambda_3 \gg \Lambda_2$

 $\Lambda_3 \gg \Lambda_2$

small

is the dilaton naturally light? not quite

F is the vacuum energy in units of f

F is the vacuum energy in units of f

NDA:
$$F_{NDA} \sim \frac{\Lambda^4}{16\pi^2 f^4} = 16\pi^2$$

generically very steep potential!

F is the vacuum energy in units of f NDA: $F_{NDA} \sim \frac{\Lambda^4}{16\pi^2 f^4} = 16\pi^2$ generically very steep potential! $V' = f^3[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$ is not small $m_{dil}^2 \sim 256\pi^2 f^2 \sim \Lambda^2$

start with a ~flat direction; no large vacuum energy (natural only in SUSY?)

F is the vacuum energy in units of f NDA: $F_{NDA} \sim \frac{\Lambda^4}{16\pi^2 f^4} = 16\pi^2$ generically very steep potential! $V' = f^3[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$ is not small $m_{dil}^2 \sim 256\pi^2 f^2 \sim \Lambda^2$

$$\mathcal{L}_{CFT} + \lambda \mathcal{O} \longrightarrow V = \chi^4 F(\lambda(\chi)) \qquad I$$

$$F(\lambda) = \frac{a}{4} + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \ldots \right]$$

$$\int_{\text{sym}} \int_{\text{sym}} \int_{\text{sym}} \text{breaking}$$

$$\mathcal{L}_{CFT} + \lambda \mathcal{O} \longrightarrow \left[V = \chi^4 F(\lambda(\chi)) \right]$$

$$F(\lambda) = \frac{a}{4} + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots \right]$$

sym sym breaking

) small vacuum energy
$$a \ll 16\pi^2$$

 $0 \qquad \delta F \qquad a \qquad 16\pi^2$

$$\mathcal{L}_{CFT} + \lambda \mathcal{O} \longrightarrow \left[V = \chi^4 F(\lambda(\chi)) \right]$$

$$F(\lambda) = \frac{a}{4} + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots \right]$$

sym sym breaking

) small vacuum energy $a \ll 16\pi^2$

2) δF dynamically cancels vs a $a + \delta F(f) \simeq 0$ $f = \Lambda_{UV} \left(\frac{-4\pi c_0}{\lambda(M)c_1}\right)^{1/\epsilon}$

$$\mathcal{L}_{CFT} + \lambda \mathcal{O} \longrightarrow V = \chi^4 F(\lambda(\chi))$$

$$F(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$sym \quad sym \text{ breaking}$$

$$F(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$F(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$F(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$f(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots\right]$$

$$\mathcal{L}_{CFT} + \lambda \mathcal{O} \longrightarrow V = \chi^4 F(\lambda(\chi)) \qquad F(\lambda) = a + \delta F(\lambda) = 16\pi^2 \left[c_0 + c_1 \frac{\lambda}{4\pi} + \dots \right]$$

sym fym breaking
1) small vacuum energy $a \ll 16\pi^2$
 $\int \delta F = \frac{1}{\delta F} = \frac{1}{4\pi} \int f = \frac{1}{16\pi^2} \int f = \frac$

G	H	N_G	NGBs rep. $[H] = \text{rep.}[SU(2) \times SU(2)]$
SO(5)	SO(4)	4	${f 4}=({f 2},{f 2})$
SO(6)	SO(5)	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$
SO(6)	$SO(4) \times SO(2)$	8	$\mathbf{4_{+2}} + \mathbf{ar{4}_{-2}} = 2 imes (2, 2)$
SO(7)	SO(6)	6	${f 6}=2 imes ({f 1},{f 1})+({f 2},{f 2})$
SO(7)	$\mathbf{G_2}$	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$
SO(7)	$SO(5) \times SO(2)$	10	$10_0 = (3, 1) + (1, 3) + (2, 2)$
SO(7)	$[SO(3)]^{3}$	12	(2, 2, 3) = 3 imes (2, 2)
$\operatorname{Sp}(6)$	$Sp(4) \times SU(2)$	8	$(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times (2, 1)$
SU(5)	$SU(4) \times U(1)$	8	$4_{-5}+\mathbf{ar{4}}_{+5}=2 imes(2,2)$
SU(5)	SO(5)	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$
(infinitesimal) special conformal transformations

$$x^{\mu} \to x^{\mu'} = x^{\mu} + 2(b \cdot x)x^{\mu} - b^{\mu}x^{2} + o(b^{2})$$

 $J = |\partial x'/\partial x| = 1 + 8b \cdot x + o(b^{2})$

$$\chi(x) \to \chi'(x') = J^{-1/4} \chi(x) \tag{A.4}$$
$$\partial_{\mu} \chi(x) \to \frac{\partial x^{\alpha}}{\partial x'^{\mu}} J^{-1/4} \chi(x) \left(\partial_{\alpha} \sigma - 2b_{\alpha}\right) \tag{A.5}$$

$$\partial_{\mu}\sigma \to \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \left(\partial_{\alpha}\sigma - 2b_{\alpha}\right)$$
 (A.6)

$$\Box \sigma \to J^{-1/2} \left(\Box \sigma + 4b^{\alpha} \partial_{\alpha} \sigma \right) \tag{A.7}$$

$$(\partial_{\mu}\sigma)^{2} \to J^{-1/2} \left[(\partial_{\alpha}\sigma)^{2} - 4b^{\alpha}\partial_{\alpha}\sigma \right]$$
 (A.8)

$$\Box \sigma)^2 \to J^{-1} \left[(\Box \sigma) + 8b^\alpha \partial_\alpha \sigma \Box \sigma \right] \tag{A.9}$$

$$s^{\mu}_{\mu} \equiv (\Box \sigma + (\partial_{\mu} \sigma)^2) \to J^{-1/2} s^{\mu}_{\mu} \tag{A.10}$$

$$a^{\mu}_{\mu} \equiv \left(\Box \sigma - (\partial_{\mu} \sigma)^2\right) \to J^{-1/2} \left[a^{\mu}_{\mu} + 8b^{\alpha} \partial_{\alpha} \sigma\right] \tag{A.11}$$

$$s_{\mu\nu} \equiv (\partial_{\mu}\partial_{\nu}\sigma + \partial_{\mu}\sigma\partial_{\nu}\sigma) \rightarrow \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \left[s_{\alpha\beta} - 4b_{\alpha}\partial_{\beta}\sigma - 4b_{\beta}\partial_{\alpha}\sigma + 2g_{\alpha\beta}b^{\gamma}\partial_{\gamma}\sigma\right]$$
(A.12)
$$a_{\mu\nu} \equiv (\partial_{\mu}\partial_{\nu}\sigma - \partial_{\mu}\sigma\partial_{\nu}\sigma) \rightarrow \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} \left[a_{\alpha\beta} + 2g_{\alpha\beta}b^{\gamma}\partial_{\gamma}\sigma\right] .$$
(A.13)

non-covariant transformations