

Standard Model Electroweak scalar boson as inflaton and the recent LHC results

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

ULB, Belgium

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 1 / 22

Inflation

Inflationary solution of Hot Big Bang problems

Universe is uniform!

Dmitry Gorbunov (INR)

Inflation

Chaotic inflation: simple realization

$$S = \int d^4 x \sqrt{-g} \left(-\frac{M_P^2}{2}R + \frac{(\partial_\mu X)^2}{2} - \beta X^4 \right)$$
$$\ddot{X} + 3H\dot{X} + V'(X) = 0$$
$$\frac{\dot{a}^2}{a^2} = H^2 = \frac{1}{M_P^2}V(X) , \quad a(t) \propto e^{Ht}$$

slow roll conditions get satisfied at $X_{
m e} > M_{
m Pl} = M_{
m Pl}^2/(8\pi)$

generation of scale-invariant scalar (and tensor) perturbations from exponentially stretched quantum fluctuations of X

In a unitary gauge $H^T = (0, (h+v)/\sqrt{2})$

(and neglecting $v = 246 \,\text{GeV}$) $\lambda \sim 0.1 -$

$$S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2}{2} R + \frac{(\partial_\mu h)^2}{2} - \frac{\lambda h^4}{4} \right)$$

Dmitry Gorbunov (INR)

31 October 2012

ULB. Belaium 3 / 22

▲ 글 ▶ _글|님

Inflation

Chaotic inflation: simple realization

$$S = \int d^4 x \sqrt{-g} \left(-\frac{M_P^2}{2}R + \frac{(\partial_\mu X)^2}{2} - \beta X^4 \right)$$
$$\ddot{X} + 3H\dot{X} + V'(X) = 0$$
$$\frac{\dot{a}^2}{a^2} = H^2 = \frac{1}{M_P^2}V(X) , \quad a(t) \propto e^{Ht}$$

slow roll conditions get satisfied at $X_{
m e} > M_{
m Pl} = M_{
m Pl}^2/(8\pi)$

generation of scale-invariant scalar (and tensor) perturbations from exponentially stretched quantum fluctuations of X

We have scalar in the SM! The Higgs field!

In a unitary gauge $H^T = (0, (h+v)/\sqrt{2})$

(and neglecting
$$v = 246 \,\text{GeV}$$
) $\lambda \sim 0.1$

$$S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2}{2} R + \frac{(\partial_\mu h)^2}{2} - \frac{\lambda h^4}{4} \right)$$

(3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)

Dmitry Gorbunov (INR)

31 October 2012

- 1

Higgs-inflation

In a

F.Bezrukov, M.Shaposhnikov (2007)

$$S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2}{2}R - \xi H^{\dagger} HR + \mathscr{L}_{SM} \right)$$

unitary gauge $H^T = \left(0, (h+v)/\sqrt{2} \right)$ (and neglecting $v = 246 \,\text{GeV}$)

$$S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2 + \xi h^2}{2}R + \frac{(\partial_\mu h)^2}{2} - \frac{\lambda h^4}{4} \right)$$

slow roll behavior due to modified kinetic term even for $\lambda \sim 1$ Go to the Einstein frame:

 $(M_P^2 + \xi h^2) R \rightarrow M_P^2 \tilde{R}$

$$g_{\mu\nu} = \Omega^{-2} \tilde{g}_{\mu\nu} , \qquad \Omega^2 = 1 + rac{\xi h^2}{M_P^2}$$

with canonically normalized χ :

$$\frac{d\chi}{dh} = \frac{M_P \sqrt{M_P^2 + (6\xi + 1)\xi h^2}}{M_P^2 + \xi h^2}, \ U(\chi) = \frac{\lambda M_P^4 h^4(\chi)}{4(M_P^2 + \xi h^2(\chi))^2}.$$

we have a flat potential at large fields: $U(\chi) \rightarrow \text{const}$ @ $h \gg M_P / \sqrt{\xi}$
($\exists \mapsto \exists \mid \exists$)Dmitry Gorbunov (INR)31 October 2012ULB, Belgium 4/22

coincides with R²-model!

But NO NEW d.o.f. Different reheating temperature...

0812.3622.1111.4397

from WMAP-normalization: $\xi \approx 47000 \times \sqrt{\lambda}$

ULB. Belaium 5/22

▲ 문 ▶ 문 님

Dmitry Gorbunov (INR)

31 October 2012

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 5 / 22

F.Bezrukov, D.G., M.Shaposhnikov, 0812.3622

$$m_W^2(\chi) = \frac{g^2}{2\sqrt{6}} \frac{M_P |\chi(t)|}{\xi}$$
$$m_t(\chi) = y_t \sqrt{\frac{M_P |\chi(t)|}{\sqrt{6}\xi}} \operatorname{sign} \chi(t)$$

reheating via W^+W^- , ZZ production at zero crossings then nonrelativistic gauge bosons scatter to light fermions

$$\chi
ightarrow W^+ W^-
ightarrow f \overline{f}$$

Hot stage starts almost from $T = M_P / \xi \sim 10^{14} \, \text{GeV}$:

$$3.4 \times 10^{13}\,\text{GeV} < \mathcal{T}_{\scriptscriptstyle \Gamma} < 9.2 \times 10^{13} \left(\frac{\lambda}{0.125}\right)^{1/4}\text{GeV}$$

$n_s = 0.967, r = 0.0032$		F.Bezrukov, D.G.,	
WMAP-normalization: $\xi \approx 47000 \times \sqrt{\lambda}$		1111.4397 ∢≣ ≻ ≞∣≡	
31 October 2012		ULB. Belaium	6/22

Reheating by Higgs field

after inflation:

 $M_P/\xi < h < M_P/\sqrt{\xi}$

effective dynamics : $h^2 \rightarrow \chi$

$$\mathscr{L} = rac{1}{2} \partial_\mu \chi \partial^\mu \chi - rac{\lambda}{6} rac{M_P^2}{\xi^2} \chi^2$$

Advantage: NO NEW interactions to reheat the Universe inflaton couples to all SM fields!

Dmitry Gorbunov (INR)

Higgs-inflation

True Extension of the Standard Model should

- Reproduce the correct neutrino oscillations
- Contain the viable DM candidate
- Be capable of explaining the baryon asymmetry of the Universe
- Have the inflationary mechanism operating at early times

Guiding principle:

use as little "new particle physics" as possible

Dmitry Gorbunov (INR)

31 October 2012

Higgs-inflation

N

Straightforward renormalizable completion: vMSM

- Use as little "new physics" as possible
- Require to get the correct neutrino oscillations
- Explain DM and baryon asymmetry of the Universe

Lagrangian

Most general renormalizable with 3 right-handed neutrinos N_l

$$\mathscr{L}_{vMSM} = \mathscr{L}_{MSM} + \overline{N}_I i \partial N_I - f_{I\alpha} H \overline{N}_I L_\alpha - \frac{M_I}{2} \overline{N}_I^c N_I + \text{h.c.}$$

Extra coupling constants:

3 Majorana masses *M*_i

T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

15 new Yukawa couplings T.Asaka, M.Shaposhnikov (2005) (Dirac mass matrix $M^D = f_{I\alpha} \langle H \rangle$ has 3 Dirac masses,

6 mixing angles and 6 CP-violating phases)

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 8 / 22

▲ 글 ▶ _ 글 | 님

The extension is remarkably simple:

It explains

- inflation without introducing a new scalars
- post-inflationary reheating without new interactions with SM fields

It may be further modified (e.g. by vMSM) to resolve other phenomenological problems of the SM:

- neutrino oscillations
- dark matter
- baryon asymmetry of the Universe

▲ 글 ▶ _글|님

Higgs-inflation

Naively all we need is $V\sim\lambda\,\phi^4>0...$

(here in the Einstein frame)

Higgs boson mass

Multiple point principle: D.Bennett, H.Nielsen (1993), C.Froggatt, H.Nielsen (1995)

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 11 / 22

Higgs boson mass

Critical point: where EW-vacuum becomes unstable

$$m_h^{\rm H} > \left[129.0 + \frac{m_t - 172.9\,{\rm GeV}}{1.1\,{\rm GeV}} \times 2.2 - \frac{\alpha_s(M_Z) - 0.1181}{0.0007} \times 0.56 \right] {\rm GeV}$$

present measurements at CMS and ATLAS:

$$m_h \simeq 125.5 \pm 1 \text{ GeV}$$

Higgs mass M_h =124 GeV

31 October 2012

Upper limit on the Higgs boson mass

Higgs-inflation: selfconsistency, $h \sim M_{Pl}$

F.Bezrukov, M.Shaposhnikov (2009) F.Bezrukov, D.G. (2011) F.Bezrukov, M.Kalmykov, B.Kniehl, M.Shaposhnikov (2012) G. Degrassi et al (2012)

$$m_h^{\rm H} > \left[129.0 + \frac{m_t - 172.9\,{\rm GeV}}{1.1\,{\rm GeV}} \times 2.2 - \frac{\alpha_{\rm S}(M_Z) - 0.1181}{0.0007} \times 0.56 \right] {\rm GeV}$$

critical value refers to

$$\xi \approx 47000 \times \sqrt{\lambda} \cdots \rightarrow 0$$
 ?

 $\lambda(h \rightarrow M_{\rm P}) \rightarrow 0$

Recall:

 5σ hints at CMS, ATLAS: $m_h \approx 125.5 \,\text{GeV}$

errors in M_W give uncertainties $< 0.2 \,\text{GeV}$

Pole top mass M_t , GeV

Experimental uncertainties: 2-3 GeV Theoretical uncertainties: 1-2 GeV

Important for further improvement:

- 3-loop matching and QCD for t
- measurement of α_s, m_t and m_h at LHC(?)

Dmitry Gorbunov (INR)

31 October 2012

The SM Higgs boson (?) found @ 125 GeV

- When the digit matters...!!
- Smooth incorporation of gravity @ M_{Pl}?
 - Great desert up to Gravity scale

(asymptotic safety?)

(no gauge hierarchy problem: all NP we need

is either @ EW-scale or in gravity sector)

- viable (v, DM, BAU) SM extensions: R^2 -inflation with vMSM, Higgs-inflation $(\operatorname{can} S^2 H^{\dagger} H \operatorname{help}), \ldots$

- It's another scale: e.g. PQ-scale, or Leptogenesis, etc.
- Just a coincidence, e.g. as GUT

- gauge coupling unification \rightarrow (gauge hierarchy problem, then not at a single point) \rightarrow SUSY

- there are other "hints":

 $m_b^2 \approx m_Z m_t$, $m_h \approx v/2 \approx 3m_Z/2$, $\lambda (m_h = 125 \text{ GeV}) \approx 0.125$

Is Nature aware of GeV and decimal system?

∢ 글 ▶ _글|님

Fine theoretical descriptions both in

$$\begin{array}{l} {\sf UV:} \quad \chi \gg M_P \ , \ U = \\ {\sf const} + \mathscr{O}\left(\exp\left(-\sqrt{2}\,\chi/\sqrt{3}M_P\right)\right) \end{array}$$

and in

IR:
$$h \ll M_P / \xi$$
, $U = \frac{\lambda}{4} h^4$

no gravity corrections at inflation! (Unlike βX^4) All inflationary predictions are robus

Obvious problem with QFT-description of IR/UV matching at intermediate $\chi < \chi_{\rm end}$ and $h < M_P/\sqrt{\xi}$

Hence no reliable prediction for the SM Higgs boson mass $m_h = \sqrt{2\lambda} v$ except the absence of Landau pole and wrong minimum of Higgs potential (well) below M_P/ξ

 $130\,\mathrm{GeV}\lesssim m_h\lesssim 190\,\mathrm{GeV}$

exponentially flat potential! @ $h \gg M$

$$@ n \gg M_P/\sqrt{\zeta}:$$

$$U(\chi) = \frac{\lambda M_{P}^{4}}{4\xi^{2}} \left(1 - \exp\left(-\frac{\sqrt{2}\chi}{\sqrt{3}M_{P}}\right)\right)^{2}$$

coincides (apart of $T_{reh} \simeq 10^{14} \text{ GeV}$) with R^2 -model! But NO NEW d.o.f. 0812.3622

$$n_s = 0.967$$
, $r = 0.0032$, $N = 57.7$

from WMAP-normalization: $\xi \approx 47000 \times \sqrt{\lambda}$

★ 문 ▶ 문 범

Dmitry Gorbunov (INR)

31 October 2012

Fine theoretical descriptions both in

$$\begin{array}{l} {\sf UV:} \quad \chi \gg M_P \ , \ U = \\ {\sf const} + \mathscr{O}\left(\exp\left(-\sqrt{2}\,\chi/\sqrt{3}M_P\right)\right) \end{array}$$

and in

IR:
$$h \ll M_P/\xi$$
, $U = \frac{\lambda}{4}h^4$

no gravity corrections at inflation! (Unlike βX^4) All inflationary predictions are robust

 $U(\chi)$ $\lambda M^4/\xi^2/4$ $\lambda v^4/4$ $\lambda M^4/\xi^2/16$ χ_{end} XWMAP χ

exponentially flat potential!

Strong coupling

 $h \gg M_P / \sqrt{\xi}$:

$$U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 - \exp\left(-\frac{\sqrt{2}\chi}{\sqrt{3}M_P}\right) \right)$$

Obvious problem with QFT-description of IR/UV matching at intermediate $\chi < \chi_{end}$ and $h < M_P / \sqrt{\xi}$

Hence no reliable prediction for the SM Higgs boson mass $m_b = \sqrt{2\lambda} v$ except the absence of Landau pole and wrong minimum of Higgs potential (well) below M_P/ξ

 $130 \,\mathrm{GeV} \lesssim m_h \lesssim 190 \,\mathrm{GeV}$

coincides (apart of $T_{reh} \simeq 10^{14} \text{ GeV}$) with R^2 -model! But NO NEW d.o.f. 0812 3622

$$n_s = 0.967$$
, $r = 0.0032$, $N = 57.7$

from WMAP-normalization: $\xi \approx 47000 \times \sqrt{\lambda}$

() >) ≥ | ≥

Dmitry Gorbunov (INR)

31 October 2012

Strong coupling

N

Strong coupling in Higgs-inflation: scatterings

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 16 / 22

Strong coupling at M_P/ξ ...

Can it change the initial conditions of the Hot Big Bang?

- reheating temperature
- 2 baryon (lepton) asymmetry of the Universe
- dark matter abundance

Let's test these options adding all possible nonrenormalizable operators to the model

▲ 글 ▶ 글 글 글

N

What can nonrenormalizable operators do?

F.Bezrukov, D.G., Shaposhnikov (2011)

$$\begin{split} \delta \mathscr{L}_{\mathsf{N}\mathsf{R}} &= -\frac{a_6}{\Lambda^2} (H^{\dagger} H)^3 + \cdots \\ &+ \frac{\beta_L}{4\Lambda} F_{\alpha\beta} \bar{L}_{\alpha} \tilde{H} H^{\dagger} L^c_{\beta} + \frac{\beta_B}{\Lambda^2} O_{\mathsf{baryon violating}} + \cdots + \mathsf{h.c.} \\ &+ \frac{\beta_N}{2\Lambda} H^{\dagger} H \bar{N}^c N + \frac{b_{L_{\alpha}}}{\Lambda} \bar{L}_{\alpha} (\mathcal{D}N)^c \tilde{H} + \cdots , \end{split}$$

 L_{α} are SM leptonic doublets, $\alpha = 1, 2, 3, N$ stands for right handed sterile neutrinos potentially present in the model, $\tilde{H}_a = \varepsilon_{ab}H_b^*$, a, b = 1, 2;

and

$$\Lambda = \Lambda(h) = \left\{ \Lambda_{g-s}(h) , \Lambda_{\text{gauge}}(h) , \Lambda_{\text{Planck}}(h) \right\}$$

couplings can differ significantly in different regions of h: today $h < M_P/\xi$, at preheating $M_P/\xi < h < M_P/\sqrt{\xi}$

∢ 글 ▶ _글|님

LFV, BV nonrenormalizable operators today

Neutrino masses: easily

$$\mathscr{L}_{vv}^{(5)} = \frac{\beta_L v^2}{4\Lambda} \frac{F_{\alpha\beta}}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.}$$

hence

$$\Lambda \sim 3 \times 10^{14} \, \text{GeV} \times \beta_L \times \left(\frac{3 \times 10^{-3} \, \text{eV}^2}{\Delta m_{\text{atm}}^2}\right)^{1/2}$$

when

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14}\,\text{GeV}$$

can explain with

$$\beta_L \sim 0.2$$

Proton decay: probably

$$\mathscr{L}^{(6)} \propto \frac{\beta_B}{\Lambda^2} Q Q Q L$$

then from experiments

$$\Lambda\gtrsim\sqrt{\beta_{\mathcal{B}}}\times10^{16}\,\text{GeV}\times\left(\frac{\tau_{\rho\to\pi^{0}\theta^{+}}}{1.6\times10^{33}\,\text{years}}\right)^{1/4}$$

with the same

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14} \, \mathrm{GeV}$$

one needs

 $eta_B < 0.4 imes 10^{-4}$

Either *B* and L_{α} are significantly different or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 19 / 22

(3) 가 크네님

BAU, neutrino oscillations from UV-physics?

LFV, BV nonrenormalizable operators today

Neutrino masses: easily

$$\mathscr{L}_{\nu\nu}^{(5)} = \frac{\beta_L v^2}{4\Lambda} \frac{F_{\alpha\beta}}{2} \bar{v}_{\alpha} v_{\beta}^{c} + \text{h.c.}$$

hence

$$\Lambda \sim 3 \times 10^{14} \, \text{GeV} \times \beta_L \times \left(\frac{3 \times 10^{-3} \, \text{eV}^2}{\Delta m_{\text{atm}}^2}\right)^{1/2}$$

when

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14} \, \text{GeV}$$

can explain with

 $\beta_L \sim 0.2$

Proton decay: probably

$$\mathscr{L}^{(6)} \propto \frac{\beta_B}{\Lambda^2} QQQL$$

then from experiments

$$\Lambda\gtrsim \sqrt{\beta_{B}}\times 10^{16}\,\text{GeV}\times \left(\frac{\tau_{\rho\to\pi^{0}e^{+}}}{1.6\times 10^{33}\,\text{years}}\right)^{1/4}$$

with the same

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14} \, \text{GeV}$$

one needs

 $eta_B < 0.4 imes 10^{-4}$

Either *B* and L_{α} are significantly different or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 19 / 22

▲ 글 ▶ 그리님

BAU, neutrino oscillations from UV-physics?

LFV, BV nonrenormalizable operators today

Neutrino masses: easily

$$\mathscr{L}_{\nu\nu}^{(5)} = \frac{\beta_L v^2}{4\Lambda} \frac{F_{\alpha\beta}}{2} \bar{v}_{\alpha} v_{\beta}^{c} + \text{h.c.}$$

hence

$$\Lambda \sim 3 \times 10^{14} \, \text{GeV} \times \beta_L \times \left(\frac{3 \times 10^{-3} \, \text{eV}^2}{\Delta m_{\text{atm}}^2}\right)^{1/2}$$

when

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14}\,\text{GeV}$$

can explain with

$\beta_L \sim 0.2$

Proton decay: probably

$$\mathscr{L}^{(6)} \propto \frac{\beta_B}{\Lambda^2} QQQL$$

then from experiments

$$\Lambda\gtrsim \sqrt{\beta_{B}}\times 10^{16}\,\text{GeV}\times \left(\frac{\tau_{\rho\to\pi^{0}e^{+}}}{1.6\times 10^{33}\,\text{years}}\right)^{1/4}$$

with the same

$$\Lambda = \frac{M_P}{\xi} \sim 0.6 \times 10^{14} \, \text{GeV}$$

one needs

 $eta_B < 0.4 imes 10^{-4}$

Either *B* and L_{α} are significantly different or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 19 / 22

▲ 글 ▶ 그리님

Leptogenesis, $\Delta_B \approx \Delta_L/3$: can be successful

$$i \frac{d}{dt} \hat{Q}_L = \left[\hat{H}_{\text{int}}, \hat{Q}_L \right], \quad \Delta n_L \equiv n_L - n_{\bar{L}} = \langle Q_L \rangle$$

 $\mathscr{L}_{Y} = -Y_{\alpha}\bar{L}_{\alpha}HE_{\alpha} + \text{h.c.}, \qquad \mathscr{L}_{\nu\nu}^{(5)} = \frac{\beta_{L}}{4\Lambda}F_{\alpha\beta}\bar{L}_{\alpha}\tilde{H}H^{\dagger}L_{\beta}^{c} + \text{h.c.}$ $d\Delta n_{L}/dt \sim \text{Im}\left(\beta_{L}^{4}\text{Tr}\left(FF^{\dagger}FYYF^{\dagger}YY\right)\right) \propto \beta_{L}^{4}y_{\tau}^{4} \cdot \text{Im}\left(F_{3\beta}F_{\alpha\beta}^{*}F_{\alpha\beta}F_{\alpha\beta}^{*}F_{\alpha\beta$

for the gauge cutoff $\Lambda = h$ one has

$$\beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right)^{5/4} \times 10^{-10} < \Delta_L < \beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right) \times 10^{-9} \; ,$$

for gravity-scalar cutoff $\Lambda = \xi h^2/M_P$

$$\beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right)^{13/4} \times 6.3 \times 10^{-13} < \Delta_L < \beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right)^2 \times 2.4 \times 10^{-10}$$

In both cases the asymmetry can be (significantly) increased with operator

$$\delta \mathscr{L}^{\tau} = y_{\tau} L_{\tau} H E_{\tau} + \beta_{y} L_{\tau} H E_{\tau} \frac{H^{\uparrow} H}{\Lambda^{2}} + \cdots$$

one can fancy the hierarchy

gives a factor up to 10⁸ !

$$\sim eta_y \gg y_ au \sim 10^{-2}$$
 .

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 20 / 22

∢ 글 ▶ _글|님

ЯN ИR

Leptogenesis, $\Delta_B \approx \Delta_L/3$: can be successful

$$i \frac{d}{dt} \hat{Q}_L = \left[\hat{H}_{\text{int}}, \hat{Q}_L \right], \quad \Delta n_L \equiv n_L - n_{\bar{L}} = \langle Q_L \rangle$$

 $\mathscr{L}_{Y} = -Y_{\alpha}\bar{L}_{\alpha}HE_{\alpha} + \text{h.c.}, \qquad \mathscr{L}_{\nu\nu}^{(5)} = \frac{\beta_{L}}{4\Lambda}F_{\alpha\beta}\bar{L}_{\alpha}\tilde{H}H^{\dagger}L_{\beta}^{c} + \text{h.c.}$

$$d\Delta n_L/dt \propto \operatorname{Im}\left(\beta_L^4 \operatorname{Tr}\left(FF^{\dagger}FYYF^{\dagger}YY\right)\right) \propto \beta_L^4 y_{\tau}^4 \cdot \operatorname{Im}\left(F_{3\beta}F_{\alpha\beta}^*F_{\alpha\beta}F_{\alpha3}^*F_{\alpha3}^*\right)$$

for the gauge cutoff $\Lambda = h$ one has

$$\beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right)^{5/4} \times 10^{-10} < \Delta_L < \beta_L^4 \left(\frac{y_\tau}{0.01}\right)^4 \left(\frac{0.25}{\lambda}\right) \times 10^{-9} ,$$

for gravity-scalar cutoff $\Lambda = \xi h^2/M_P$

$$\beta_{L}^{4} \left(\frac{y_{\tau}}{0.01}\right)^{4} \left(\frac{0.25}{\lambda}\right)^{13/4} \times 6.3 \times 10^{-13} < \Delta_{L} < \beta_{L}^{4} \left(\frac{y_{\tau}}{0.01}\right)^{4} \left(\frac{0.25}{\lambda}\right)^{2} \times 2.4 \times 10^{-10}$$

In both cases the asymmetry can be (significantly) increased with operator

$$\delta \mathscr{L}^{\tau} = y_{\tau} L_{\tau} H E_{\tau} + \beta_{y} L_{\tau} H E_{\tau} \frac{H^{\dagger} H}{\Lambda^{2}} + \cdots$$

one can fancy the hierarchy

$$1 \sim \beta_y \gg y_\tau \sim 10^{-2}$$
 .

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 20 / 22

Dark matter: an example of sterile fermion

$$\mathscr{L}_{\text{int}} = \beta_N \frac{H^{\dagger} H}{2\Lambda} \bar{N}^c N = \frac{\beta_N}{4} \frac{h^2}{\Lambda(h)} \bar{N}^c N$$

can be produced at preheating or at the hot stage

DM fermion has to be light! (WDM?) Indeed, today

$$f_{lpha} \sim b_{L_{lpha}} \, rac{M_N}{\Lambda}$$

So, N is unstable with the γv partial width of the order

$$\Gamma_{N
ightarrow\gamma
u}\sim rac{9\,b_{Llpha}^2lpha G_F^2}{512\pi^4}rac{v^2M_N^5}{\Lambda^2}\,.$$

EGRET gives $\tau_{\gamma\nu}\gtrsim 10^{27}\,s,$ hence

for $\Lambda = M_P$: $M_N \lesssim 200 \,\text{MeV}$, for $\Lambda = M_P / \xi$: $M_N \lesssim 4 \,\text{MeV}$

0709.2299

() >) ≥ | ≥

 $\frac{b_{L_{\alpha}}}{\Lambda} \bar{L}_{\alpha}(D\!\!\!/ N)^{c} \tilde{H}$

Summary

LHC hints at 125 GeV may point at:

- Multiple point principle ...?
- No new particle physics upto gravity scale
- Higgs-inflation: 129 GeV $\leq m_h \leq$ 195 GeV

needs better precision in measurement of m_h , m_t , y_t , α_s

may ask for UV-completion... asymptotic safety?

Some other inflationary models also point at $m_h \sim 125 \text{ GeV}$ (e.g. hill-top potential in simple tensor-scalar gravity I.Masina, A.Notari (2012))

- Higgs-inflation may be easily completed to account for
 - neutrino oscillations
 - dark matter
 - baryon asymmetry of the Universe

Examples: vMSM, nonrenormalizable operators at strong coupling UV-scale

∢ 글 ▶ _글|님

▲ 문 ▶ (문)님

Backup slides

Dmitry Gorbunov (INR)

ULB, Belgium 24 / 22

▲ 문 ▶ 문 문 문

Dmitry Gorbunov (INR)

31 October 2012

ULB, Belgium 25 / 22

Models without NEW scalar(s) in PARTICLE PHYSICS SECTOR

A.Starobinsky (1980) R^2 -inflation Higgs-inflation F.Bezrukov, M.Shaposhnikov (2007) $S^{JF} = -\frac{M_P^2}{2} \int \sqrt{-g} d^4x \left(R - \frac{R^2}{6\mu^2}\right) + S^{JF}_{matter}, \quad S^{JF} = \int \sqrt{-g} d^4x \left(-\frac{M_P^2}{2}R - \xi H^{\dagger} HR\right) + S^{JF}_{matter}$ In this two models "inflatons" couple to the SM fields in different ways R^2 -inflation: gravity, $\mathscr{L} \propto \phi/M_P$ Higgs-inflation: finally, at $\phi \lesssim M_P/\xi$ like in SM D.G., A.Panin (2010) F.Bezrukov, D.G., M.Shaposhnikov (2008)

 $T_{reh} \approx 3 \times 10^9 \text{ GeV}$

 $T_{reh} \approx 6 \times 10^{13} \text{ GeV}$

with different length of the post inflationary matter domination stage:

F.Bezrukov, D.G. (2011)

somewhat different perturbation spectra

 $n_s = 0.965, r = 0.0032$ $n_s = 0.967, r = 0.0036$

break in primordial gravity wave spectra at different frequencies

- in R² perturbations 10⁻⁵ enter nonlinear regime: gravity waves from inflaton clumps
- SM Higgs potenial is OK up to the reheating scale:

 $m_h \gtrsim 116 \, \mathrm{GeV}$

 $m_h \gtrsim 120 - 129 \,\mathrm{GeV}$

Dmitry Gorbunov (INR)

31 October 2012

▲ 글 ▶ _ 글 | 글

船

The power spectra of primordial perturbations

Dmitry Gorbunov (INR)

Upper limit on the Higgs boson mass

ЯN ИR