Constraining new CP violation using EDMs and the LHC

Based on:

Y.T. Chien, V. Cirigliano, E. Mereghetti, J. de Vries, WD JHEP **1602**, 011 (2016), arXiv:1510.00725

Wouter Dekens

Beyond the standard model?

- Baryon asymmetry of the Universe
- The Sakharov conditions:
 - Baryon number violation
 - Out of thermal equilibrium
 - C and CP violation
- Hard to explain in the SM
 - CP-violating New Physics?

Beyond the standard model?

- Baryon asymmetry of the Universe
- The Sakharov conditions:
 - Baryon number violation
 - Out of thermal equilibrium

- Hard to explain in the SM
 - CP-violating New Physics?

Effective Field Theory Fermi theory

 $E, M_{\rm EW}$

 M_T

Effective Field Theory

Describing BSM physics

- At low energies, E<<m_{BSM}, BSM physics can be described by higher-dimensional operators
- These can be ordered by their dimension, with expansion parameter

Effective Field Theory

Describing BSM physics

Assumptions

- No new light degrees of freedom
- BSM physics appears above the electroweak scale, $m_{EW} << m_{BSM}$
- SM gauge group SU(3)xSU(2)xU(1) is linearly realized (elementary scalar SU(2) doublet)

Effective Field Theory

Describing BSM physics

Dimension five operators

• One term, generates Majorana neutrino masses

 $\frac{g}{M_T} (\bar{L}^c \tilde{\phi}^*) (\tilde{\phi}^\dagger L)$

Effective Field Theory

Describing BSM physics

Dimension five operatorsOne term, generates Majorana neutrino masses

Dimension six operators

- 59 operators (2499 including all flavor structures)
- 27 CP-violating terms (1149 all flavor structures)

have to make some choice of operators...

					X^3		φ^6	and $\varphi^4 D^2$		$\psi^2 arphi^3$
			Q_G	f^A	$^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	,	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
			$Q_{\widetilde{G}}$	f^A	${}^{BC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}		$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
			Q_W	ε^{IJ}	$^{K}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi I}$	р (4	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
			$Q_{\widetilde{W}}$	ε^{IJ}	$^{K}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
					$X^2 \varphi^2$		•	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
			$Q_{\varphi G}$		$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eV}	v ($\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
			$Q_{\varphi \widetilde{G}}$		$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{el}	3	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\right)$
			$Q_{\varphi W}$	-	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{u0}	д ($\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
ĺ		$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$		$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
	Qu	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma'$	(μl_t)	Qee	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t$)	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		$\left[(\varphi^{\dagger} i \overleftrightarrow{D}^{I}_{\mu} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right]$
	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma$	$^{\mu}q_{t})$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_s)$	t)	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$		$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma$	$^{\mu}\tau^{I}q_{t})$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$.)	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
	$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu)$	$^{\mu}q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t$)	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$
	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu$	$^{\mu}\tau^{I}q_{t})$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t$)	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
				$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_r)$	t)	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u)$	(ι_t)	
				$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T$	$^{A}d_{t})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
							$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A q_r)$	$l_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$				B-viol	ating					
	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t)$	^j	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}$	$\left[\left(d_{p}^{\alpha} \right) \right]$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$		
	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k)$	(d_t)	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}$	$\left[(q_p^{\alpha j})\right.$	$^{T}Cq_{r}^{\beta k}$	$] \left[(u_s^{\gamma})^T C e_t \right]$		
	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k)$	$T^A d_t$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_m$	$n\left[\left(q_{p}^{\alpha}\right)\right]$	$(j)^T C q_r^{\beta}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$		
	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k)$	$u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I)$	$(\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[(q_{r}^{\gamma m})^{T} C l_{t}^{n} \right]$		
	$O^{(3)}$	$(\bar{l}i\sigma_{\alpha}) = (\bar{a}^k)$	$\sigma^{\mu\nu}$	0.	$_{c}\alpha\beta\gamma$	$(d\alpha)T$	$C_{\alpha\beta}$]	$(u\gamma)^T C_{\alpha}$		

 $\frac{g}{M_T} (\bar{L}^c \tilde{\phi}^*) (\tilde{\phi}^\dagger L)$

Choice of operators

CP-violating BEH couplings to quarks and gluons

$$\mathcal{L}_{6} = -\frac{\theta' \frac{\alpha_{s}}{32\pi} \varepsilon^{\mu\nu\alpha\beta} G^{a}_{\mu\nu} G^{a}_{\alpha\beta}(\varphi^{\dagger}\varphi) + \sqrt{2}\varphi^{\dagger}\varphi (\bar{q}_{L}Y'_{u}u_{R}\tilde{\varphi} + \bar{q}_{L}Y'_{d}d_{R}\varphi)}{-\frac{1}{\sqrt{2}} \bar{q}_{L}\sigma \cdot G \tilde{\Gamma}_{u}u_{R} \frac{\tilde{\varphi}}{v} - \frac{1}{\sqrt{2}} \bar{q}_{L}\sigma \cdot G \tilde{\Gamma}_{d}d_{R} \frac{\varphi}{v} + \text{h.c.}}$$

• Top quark chromo-EDM

Yukawa interactions

Choice of operators

CP-violating BEH couplings to quarks and gluons

Scalar-gluon interaction

Yukawa interactions

Choice of operators

CP-violating BEH couplings to quarks and gluons

The dim6 operators contribute to BEH boson production and decay

• Signal strengths
$$\mu(i \to h \to f) \equiv \frac{\sigma_{\text{BSM}}(i \to h)}{\sigma_{\text{SM}}(i \to h)} \frac{\text{BR}_{\text{BSM}}(h \to f)}{\text{BR}_{\text{SM}}(h \to f)}$$

EDMs in the SM

• The electroweak contribution is negligible

- Unknown contribution from the QCD theta term, $\propto heta \epsilon^{lphaeta\mu
 u}G^a_{\mu
 u}G^a_{lphaeta}$
 - Will assume a Peccei-Quinn mechanism in this talk $\bar{\theta} = 0$

Current experimental status

Limits	neutron	mercury	ThO
Current (e cm)	2.9x10 ⁻²⁶	7.4x10 ⁻³⁰	8.7x10 ⁻²⁹
	Baker <i>et al,</i> '06	Graner <i>et al, '</i> 16	ACME collaboration, '14

Expected Limits

Limits	neutron	ThO
Expected (e cm)	1.0x10 ⁻²⁸	5.0x10 ⁻³⁰

Current experimental status

Limits	neutron	mercury	ThO
Current (e cm)	2.9x10 ⁻²⁶	7.4x10 ⁻³⁰	8.7x10 ⁻²⁹
	Baker <i>et al,</i> '06	Graner <i>et al, '</i> 16	ACME collaboration, '14

Expected Limits

Limits	neutron	ThO
Expected (e cm)	1.0x10 ⁻²⁸	5.0x10 ⁻³⁰

Current experimental status

Limits	neutron	mercury	ThO
Current (e cm)	2.9x10 ⁻²⁶	7.4x10 ⁻³⁰	8.7x10 ⁻²⁹
	Baker <i>et al,</i> '06	Graner <i>et al, '</i> 16	ACME collaboration, '14

Recent factor 4 improvement

Expected Limits

Limits	neutron	ThO
Expected (e cm)	1.0x10 ⁻²⁸	5.0x10 ⁻³⁰

Evolution to the electroweak scale

$$\frac{d}{d\ln\mu} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0\\ 0 & 16C_F - 4N_C & 2N_C & 0 & -1/4\pi^2\\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0\\ 0 & -18C_F \left(\frac{m_q}{v}\right)^3 & 0 & -6C_F & 12C_F \frac{\alpha_s}{4\pi} \frac{m_q}{v}\\ 0 & -8\frac{4\pi}{\alpha_s} \left(\frac{m_q}{v}\right)^2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix}$$

 $\frac{M_{EW}}{\textbf{100 GeV}}$

Energy

*M*_𝒯 ? TeV

$$\frac{d}{d \ln \mu} \begin{pmatrix} d_q/eQ_q m_q \\ \tilde{d}_q/m_q \\ d_W/g_s \\ Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0 \\ 0 & 16C_F - 4N_C & 2N_C & 0 & -1/4\pi^2 \\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0 \\ 0 & -18C_F(\frac{m_a}{v})^3 & 0 & -6C_F & 12C_F\frac{\alpha_s}{4\pi}\frac{m_a}{v} \\ 0 & -8\frac{4\pi}{\alpha_s}(\frac{m_a}{v})^2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_q/eQ_q m_q \\ \tilde{d}_q/m_q \\ d_W/g_s \\ Y'_q \\ \theta' \end{pmatrix}$$

$$\frac{\theta'}{\theta'}$$
Energy
$$M_T$$
? TeV
$$M_EW$$
100 GeV
$$\frac{d_q}{d_q}$$

$$\frac{d}{d\ln\mu} \begin{pmatrix} d_q/eQ_qm_q \\ \tilde{d}_q/m_q \\ d_W/g_s \\ Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0 \\ 0 & 16C_F - 4N_C & 2N_C & 0 & -1/4\pi^2 \\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0 \\ 0 & -18C_F(\frac{m_q}{v})^3 & 0 & -6C_F & 12C_F\frac{\alpha_s}{4\pi}\frac{m_q}{v} \\ 0 & -8\frac{4\pi}{\alpha_s}(\frac{m_q}{v})^2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_q/eQ_qm_q \\ \tilde{d}_q/m_q \\ d_W/g_s \\ Y'_q \\ \theta' \end{pmatrix}$$

$$\frac{Y'_q}{\theta'}$$
Energy
$$M_T$$
? TeV

Evolution to the electroweak scale

$$\frac{d}{d\ln\mu} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0\\ 0 & 16C_F - 4N_C & 2N_C & 0 & -1/4\pi^2\\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0\\ 0 & -18C_F \left(\frac{m_q}{v}\right)^3 & 0 & -6C_F & 12C_F \frac{\alpha_s}{4\pi} \frac{m_q}{v}\\ 0 & -8\frac{4\pi}{\alpha_s} \left(\frac{m_q}{v}\right)^2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix}$$

 d_q

Energy *M_T* ? TeV

 $\frac{M_{EW}}{\rm 100~GeV}$

$$\frac{d}{d\ln\mu} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0\\ 0 & 16C_F - 4N_C & 2N_C & 0 & -1/4\pi^2\\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0\\ 0 & 18C_F \left(\frac{m_q}{v}\right)^3 & 0 & -6C_F & 12C_F \frac{\alpha_s}{4\pi} \frac{m_q}{v}\\ 0 & -\frac{84\pi}{\alpha_s} \left(\frac{m_q}{v}\right)^2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} d_q/eQ_qm_q\\ \tilde{d}_q/m_q\\ d_W/g_s\\ Y'_q\\ \theta' \end{pmatrix}$$

Evolution to the electroweak scale

Evolution to the electroweak scale

Process	$Y'_{q \neq t}$	heta'	Y_t'	$ ilde{d}_t$

• Most stringent constraints from BEH boson production (& decay)

• O(10%, 1%) constraints

- The constraints improve by up to a factor of 2 at LHC run 2 Assuming 10% uncertainty on the signal strength of the gluon-fusion channels: $gg \rightarrow h \rightarrow \gamma \gamma, WW^*, ZZ^*$
- The BSM contributions to gluon fusion grow at the same rate as the SM contribution

Threshold corrections

Threshold corrections

Evolution to the QCD scale

Evolution to the QCD scale

Evolution to the QCD scale

Threshold corrections

 d_W

Below 1 GeV

Below 1 GeV

Below 1 GeV

Hadronic uncertainties

$$d_N = (\mu_{N,d_q}, \, \mu_{N,\tilde{d}_q}, \, \mu_{N,d_W}) \cdot \begin{pmatrix} d_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

Hadronic uncertainties

$$d_{N} = \left(\mu_{N,d_{q}}, \, \mu_{N,\tilde{d}_{q}}, \, \mu_{N,d_{W}} \right) \cdot \left(\begin{array}{c} d_{q} \\ \tilde{d}_{q} \\ d_{W} \end{array} \right)$$

Quark EDM contribution

- Lattice results
- O(10%) uncertainty
- Strange contribution consistent with zero

	$d_u(1{ m GeV})$	$d_d(1{ m GeV})$	$d_s(1{ m GeV})$
d_n	-0.22 ± 0.03	0.74 ± 0.07	0.0077 ± 0.01
d_p	0.74 ± 0.07	-0.22 ± 0.03	0.0077 ± 0.01

Hadronic uncertainties

$$d_N = (\mu_{N,d_q}, \mu_{N,\tilde{d}_q}, \mu_{N,d_W}) \cdot \begin{pmatrix} d_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

Quark color-EDM contribution

- QCD sum-rule calculations
- O(50%) uncertainty
- Strange situation unsettled

	$e \tilde{d}_u(1{ m GeV})$	$e\tilde{d}_d(1{ m GeV})$	$e\tilde{d}_s(1{ m GeV})$
d_n	-0.55 ± 0.28	-1.1 ± 0.55	XXX
d_p	1.30 ± 0.65	0.60 ± 0.30	XXX

Hadronic uncertainties

$$d_{N} = (\mu_{N,d_{q}}, \, \mu_{N,\tilde{d}_{q}}, \, \mu_{N,d_{W}}) \cdot \begin{pmatrix} d_{q} \\ \tilde{d}_{q} \\ d_{W} \end{pmatrix}$$

Weinberg contribution

- QCD sum-rule calculations
- O(100%) uncertainty (based on naive dimensional analysis estimates)
- Unknown sign

	$e d_W(1 { m GeV})$		
d_n	$\pm (50 \pm 40)$ MeV		
d_p	$\mp (50 \pm 40)$ MeV		

Pion-nucleon couplings

Hadronic uncertainties

$$\bar{g}_{0,1} = (\mu_{\bar{g}_{0,1},d_q}, \mu_{\bar{g}_{0,1},\tilde{d}_q}, \mu_{\bar{g}_{0,1},d_W}) \cdot \begin{pmatrix} d_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

Pion-nucleon couplings

Hadronic uncertainties

$$\bar{g}_{0,1} = \left(\mu_{\bar{g}_{0,1},d_q}, \mu_{\bar{g}_{0,1},\tilde{d}_q}, \mu_{\bar{g}_{0,1},d_W}\right) \cdot \begin{pmatrix} d_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

Quark color-EDM contributions

- QCD sum-rule calculations
- O(>100%) uncertainty

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1} , \qquad \bar{g}_1 = (20^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}^{-1}$$

Nuclear uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \operatorname{fm}^2, \, \alpha_p \operatorname{fm}^2, \, a_0 \, e \, \operatorname{fm}^3, \, a_1 \, e \, \operatorname{fm}^3) \cdot \begin{pmatrix} d_n \\ d_p \\ \overline{g}_0 \\ \overline{g}_1 \end{pmatrix}$$

Nuclear uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \,\mathrm{fm}^2, \,\alpha_p \,\mathrm{fm}^2, \,a_0 \,e \,\mathrm{fm}^3, \,a_1 \,e \,\mathrm{fm}^3) \cdot \begin{pmatrix} d_n \\ d_p \\ \bar{g}_0 \\ \bar{g}_1 \end{pmatrix}$$

Atomic screening

• Fairly well-known

	Atomic screening
	${\cal A}({ m fm}^{-2})$
$^{129}\mathrm{Xe}$	$(0.33 \pm 0.05) \cdot 10^{-4}$
$^{199}\mathrm{Hg}$	$-(2.8\pm0.6)\cdot10^{-4}$
225 Ra	$-(7.7\pm0.8)\cdot10^{-4}$

Nuclear uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \operatorname{fm}^2, \alpha_p \operatorname{fm}^2), a_0 e \operatorname{fm}^3, a_1 e \operatorname{fm}^3) \cdot \begin{pmatrix} d_n \\ d_p \\ \overline{g}_0 \\ \overline{g}_1 \end{pmatrix}$$

Nucleon-EDM contributions

• Fairly well-known (for Mercury)

$$\alpha_n = 1.9 \pm 0.1$$
$$\alpha_p = 0.20 \pm 0.6$$

	Atomic screening
	$\mathcal{A}(\mathrm{fm}^{-2})$
$^{129}\mathrm{Xe}$	$(0.33 \pm 0.05) \cdot 10^{-4}$
$^{199}\mathrm{Hg}$	$-(2.8\pm0.6)\cdot10^{-4}$
225 Ra	$-(7.7\pm0.8)\cdot10^{-4}$

Engel et al, '13, Dmitriev & Sen'kov, '03

Nuclear uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \, \text{fm}^2, \, \alpha_p \, \text{fm}^2, \, \overline{a_0 \, e \, \text{fm}^3, \, a_1 \, e \, \text{fm}^3}) \cdot \begin{pmatrix} d_n \\ d_p \\ \bar{g}_0 \\ \bar{g}_1 \end{pmatrix}$$

Nucleon-EDM contributionsFairly well-known (for Mercury)

$$\alpha_n = 1.9 \pm 0.1$$
$$\alpha_p = 0.20 \pm 0.6$$

Pion-nucleon contributions

• Large allowed ranges, sometimes including zero

	Atomic screening	Best values of $a_{0,1}$		Estimated ranges of $a_{0,1}$	
	$\mathcal{A}(\mathrm{fm}^{-2})$	a_0	a_1	a_0	a_1
$^{129}\mathrm{Xe}$	$(0.33\pm 0.05)\cdot 10^{-4}$	-0.10	-0.076	$\{-0.063, -0.63\}$	$\{-0.038, -0.63\}$
$^{199}\mathrm{Hg}$	$-(2.8\pm0.6)\cdot10^{-4}$	0.13	± 0.25	$\{0.063, 0.63\}$	$\{-0.38, 1.14\}$
225 Ra	$-(7.7\pm0.8)\cdot10^{-4}$	-19	76	$\{-12.6, -76\}$	$\{51, 303\}$

Engel et al, '13, Dmitriev & Sen'kov, '03

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

$$d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$$

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

 $d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$

Neutron EDM

- Depends on multiple operators
- Some operators involve O(50%,100%) hadronic uncertainties

$$d_N = (\mu_{N,d_q}, \, \mu_{N,\tilde{d}_q}, \, \mu_{N,d_W}) \cdot \begin{pmatrix} u_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

 $d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$

Neutron EDM

- Depends on multiple operators
- Some operators involve O(50%,100%) hadronic uncertainties

$$d_N = (\mu_{N,d_q}, \mu_{N,\tilde{d}_q}, \mu_{N,d_W}) \cdot \begin{pmatrix} d_q \\ \tilde{d}_q \\ d_W \end{pmatrix}$$

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

$$d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$$

Neutron EDM

- Depends on multiple operators
- Some operators involve O(50%,100%) hadronic uncertaintieş

$$d_N = (\mu_{N,d_q}, \mu_{N, ilde{d}_q}, \mu_{N,d_W})$$
 .

Mercury EDM

- Large number of contributions
- Contains (large) nuclear and hadronic uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \,\mathrm{fm}^2, \,\alpha_p \,\mathrm{fm}^2, \,a_0 \,e \,\mathrm{fm}^3, \,a_1 \,e \,\mathrm{fm}^3) \cdot \begin{pmatrix} d_n \\ d_p \\ \bar{g}_0 \\ \bar{g}_1 \end{pmatrix}$$

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

$$d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$$

Neutron EDM

- Depends on multiple operators
- Some operators involve O(50%,100%) hadronic uncertaintieş

$$d_N = (\mu_{N,d_q}, \mu_{N,\widetilde{d}_q}, \mu_{N,d_W})$$
 .

Mercury EDM

- Large number of contributions
- Contains (large) nuclear and hadronic uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \operatorname{fm}^2, \, \alpha_p \operatorname{fm}^2, \, a_0 \, e \, \operatorname{fm}^3, \, a_1 \, e \, \operatorname{fm}^3)$$

 \tilde{d}_q ,

ThO measurement

- Effectively a constraint on the electron EDM in our case
- No hadronic uncertainties

$$d_e \le 8.7 \times 10^{-29} e \,\mathrm{cm}$$

Neutron EDM

- Depends on multiple operators
- Some operators involve O(50%,100%) hadronic uncertaintieş

$$d_N = (\mu_{N,d_q}, \mu_{N,\tilde{d}_q}, \mu_{N,d_W}) \cdot$$

Mercury EDM

- Large number of contributions
- Contains (large) nuclear and hadronic uncertainties

$$d_A = \mathcal{A}_A(\alpha_n \operatorname{fm}^2, \, \alpha_p \operatorname{fm}^2, \, a_0 \, e \, \operatorname{fm}^3, \, a_1 \, e \, \operatorname{fm}^3)$$

 $\begin{pmatrix} d_q \\ \tilde{d}_q \end{pmatrix}$

Matrix element treatment

Derive constraints in several ways:

• 'Central case': Take central values of the matrix elements

Matrix element treatment

Derive constraints in several ways:

- 'Central case': Take central values of the matrix elements
- **'Rfit/Minimized':** Vary matrix elements within their allowed ranges; choose values giving the smallest Chi-square (pick the weakest bound)
Matrix element treatment

Derive constraints in several ways:

- 'Central case': Take central values of the matrix elements
- **'Rfit/Minimized':** Vary matrix elements within their allowed ranges; choose values giving the smallest Chi-square (pick the weakest bound)
- **'Improved theory':** Rfit/minimize using improved matrix elements

Known to 25%

Matrix element treatment

Derive constraints in several ways:

- 'Central case': Take central values of the matrix elements
- **'Rfit/Minimized':** Vary matrix elements within their allowed ranges; choose values giving the smallest Chi-square (pick the weakest bound)
- **'Improved theory':** Rfit/minimize using improved matrix elements Assume: (d_a)

$$d_{N} = (\mu_{N,d_{q}}, \mu_{N,\tilde{d}_{q}}) \mu_{N,d_{W}}) \cdot \begin{pmatrix} \tilde{d}_{q} \\ d_{W} \end{pmatrix}$$
$$d_{A} = \mathcal{A}_{A}(\alpha_{n} \text{ fm}^{2}, \alpha_{p} \text{ fm}^{2}, a_{0} e \text{ fm}^{3}, a_{1} e \text{ fm}^{3}) \cdot \begin{pmatrix} d_{n} \\ d_{p} \\ \bar{g}_{0} \\ \bar{g}_{1} \end{pmatrix}$$

Known to 25%

Known to 50%

Matrix element treatment

Derive constraints in several ways:

- **'Central case':** Take central values of the matrix elements
- **'Rfit/Minimized':** Vary matrix elements within their allowed ranges; choose values giving the smallest Chi-square (pick the weakest bound)
- **'Improved theory':** Rfit/minimize using improved matrix elements Assume: $\left(\begin{array}{c} d_{q} \end{array} \right)$

 d_p

$$d_{N} = (\mu_{N,d_{q}}, \mu_{N,\tilde{d}_{q}}) (\mu_{N,d_{W}}) \cdot \begin{pmatrix} d_{q} \\ d_{W} \end{pmatrix}$$
$$d_{A} = \mathcal{A}_{A}(\alpha_{n} \text{ fm}^{2}, \alpha_{p} \text{ fm}^{2}, a_{0} e \text{ fm}^{3}, a_{1} e \text{ fm}^{3}) \cdot \begin{pmatrix} d_{n} \\ d_{p} \\ \overline{g}_{0} \end{pmatrix}$$

IE-06

250

Λ

(TeV)

2.5

25

Central

250

Light Yukawa

- Contribute mainly to the light (color) EDMs
- Results in neutron and mercury EDMs

250

EDM constraints

Heavier Yukawa

- Contributions to light (color) EDMs
- Contributions to the Weinberg
- Electron EDM is generated

 $d_e d_{u,d,s}, \tilde{d}_{u,d,s}$

250

EDM constraints

Heavier Yukawa

- Contributions to light (color) EDMs
- Contributions to the Weinberg
- Electron EDM is generated

EDM constraints

Heavier Yukawa

- Contributions to light (color) EDMs
- Contributions to the Weinberg
- Electron EDM is generated

EDM constraints

Heavier Yukawa

- Contributions to light (color) EDMs
- Contributions to the Weinberg
- Electron EDM is generated

Theta'

- Contribute mainly to the light (color) EDMs
- Results in neutron and mercury EDMs

Top color-EDM

- Mainly contributes to the Weinberg
- Results in neutron and mercury EDMs

Effects of minimizing:

- No Hg constraints for any coupling,
- Neutron EDM bounds much weaker, eEDM takes over in several cases
- Largest effects due to
 - Poorly known matrix elements (sEDM, Weinberg)
 - Cases where different contributions can cancel ($\theta', Y'_{c,b}$)

Assuming:

$$d_{N} = (\mu_{N,d_{q}}, \mu_{N,\tilde{d}_{q}}, \mu_{N,d_{W}}) \cdot \begin{pmatrix} d_{q} \\ \tilde{d}_{q} \\ d_{W} \end{pmatrix}$$
 Known to 25% Known to 50%

Assuming:

$$d_{N} = (\mu_{N,d_{q}}, \mu_{N,\tilde{d}_{q}}, \mu_{N,d_{W}}) \cdot \begin{pmatrix} d_{q} \\ \tilde{d}_{q} \\ d_{W} \end{pmatrix}$$
Known to 25%
Known to 50%
Close to central constraints

- EDMs win for the up, down and top Yukawa's
- Using the minimization procedure for EDMs the LHC is competitive or better for the rest
- Suggests complementarity

Complementary examples

Top Yukawa vs bottom Yukawa

Minimized

Summar/Conclusions

Studied the effects of CP-violating scalar-quark & scalar-gluon couplings

- In BEH boson production at the LHC
- In EDM measurements
- Both observables can probe these couplings > a few TeV

Best constraints come from combination of EDMs and the LHC The LHC and EDMs are complementary in several cases

Uncertain matrix elements significantly affect EDM bounds ('minimized' case)

• Goal to get close to the naive 'central' case:

$$d_{N} = (\mu_{N,d_{q}}, \mu_{N,\tilde{d}_{q}}, \mu_{N,d_{W}}) \cdot \begin{pmatrix} d_{q} \\ \tilde{d}_{q} \\ d_{W} \end{pmatrix} \quad d_{A} = \mathcal{A}_{A}(\alpha_{n} \text{ fm}^{2}, \alpha_{p} \text{ fm}^{2}, a_{0} e \text{ fm}^{3}, a_{1} e \text{ fm}^{3}) \cdot \begin{pmatrix} d_{n} \\ d_{p} \\ \bar{g}_{0} \\ \bar{g}_{1} \end{pmatrix}$$
Known to 25%
Known to 50%

Wouter Dekens, ULB, 10-02-2016

Thank you for your attention!

Wouter Dekens, ULB, 10-02-2016

Backup slides

Current experimental status

Limits	neutron	mercury	ThO
Current (e cm)	2.9x10 ⁻²⁶	7.4x10 ⁻³⁰	8.7x10 ⁻²⁹
	Baker <i>et al,</i> '06	Graner <i>et al, '</i> 16	ACME collaboration, '14

Recent factor 4 improvement

Expected Limits

Limits	neutron	ThO	proton/ deuteron	Xenon	Radium
Expected (e cm)	1.0x10 ⁻²⁸	5.0x10 ⁻³⁰	1.0x10 ⁻²⁹	5.0x10 ⁻²⁹	1.0x10 ⁻²⁷

At 1 GeV

$M_T = 1 \mathrm{TeV}$	$\operatorname{Im} Y'_u$	$\operatorname{Im} Y'_d$	$\operatorname{Im} Y_c'$	$\operatorname{Im} Y'_s$	$\operatorname{Im} Y_t'$	$\operatorname{Im} Y_b'$	heta'	$ ilde{d}_t/m_t$
d_u/m_u	15.e	_	$2.8 \cdot 10^{-5} e$	_	$7.3 \cdot 10^{-5} e$	$7.1 \cdot 10^{-5} e$	$9.3 \cdot 10^{-5} e$	$4.2 \cdot 10^{-4} e$
$ ilde{d}_u/m_u$	26.	—	$9.8 \cdot 10^{-5}$	—	$1.9 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$1.1 \cdot 10^{-3}$
d_d/m_d	_	-3.5e	$-1.4 \cdot 10^{-5} e$	—	$-3.7 \cdot 10^{-5} e$	$-3.5 \cdot 10^{-5} e$	$-4.7 \cdot 10^{-5} e$	$-2.1 \cdot 10^{-4} e$
$ ilde{d}_d/m_d$	_	12.	$9.8\cdot10^{-5}$	—	$1.9\cdot10^{-4}$	$1.7 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$1.1 \cdot 10^{-3}$
d_s/m_s	_	—	$-1.4 \cdot 10^{-5} e$	-0.18 e	$-3.7 \cdot 10^{-5} e$	$-3.5 \cdot 10^{-5} e$	$-4.7 \cdot 10^{-5} e$	$-2.1 \cdot 10^{-4} e$
$ ilde{d}_s/m_s$	_	—	$9.8\cdot10^{-4}$	0.62	$1.9\cdot10^{-4}$	$1.7 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$1.1 \cdot 10^{-3}$
d_e/m_e	_	—	$2.5 \cdot 10^{-5} e$	$1.3 \cdot 10^{-6} e$	$7.0 \cdot 10^{-5} e$	$1.3 \cdot 10^{-5} e$	$-7.2 \cdot 10^{-8} e$	$-8.0 \cdot 10^{-6} e$
d_W	-	—	$-1.5 \cdot 10^{-3}$	—	$2.7 \cdot 10^{-6}$	$-2.3 \cdot 10^{-4}$	$-7.3 \cdot 10^{-6}$	$-1.9 \cdot 10^{-3}$

Single-coupling constraints

	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y'_c$	$v^2 \mathrm{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 \operatorname{Im} Y_b'$
Comb. Cen.	$3.9 \cdot 10^{-7}$	$3.0 \cdot 10^{-7}$	$1.1 \cdot 10^{-3}$	$4.3 \cdot 10^{-4}$	$7.6 \cdot 10^{-3}$	$8.4 \cdot 10^{-3}$
Comb. Min.	$2.8 \cdot 10^{-6}$	$1.5 \cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8 \cdot 10^{-3}$	0.041
LHC	$0.6 \cdot 10^{-2}$	$0.7 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$15 \cdot 10^{-2}$	$3.8 \cdot 10^{-2}$

Complementary examples

Strange Yukawa vs bottom Yukawa

Complementary examples

Top Yukawa vs top color-EDM

Wouter Dekens Bad Honnef, 01-10-2015

Two-coupling analysis

• The Minimized procedure weakens the bounds

Improved theory again gets close to the Central Case

