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ULBPhysTh Seminar, Université Libre de Bruxelles, 28.03.2014, Brussels,

Belgium

– p. 1/79



Outline

• lepton mixing: parametrization and data

• combination of flavour and CP symmetries
• general idea
• examples: Gf = S4 and Gf = ∆(48)

• predictions for leptogenesis

• conclusions & outlook

– p. 2/79



Parametrization of lepton mixing

• charged lepton and (Majorana) neutrino mass terms

eca me,ab lb and νa mν,ab νb

cannot be diagonalized simultaneously

• going to the mass basis

U †
em

†
emeUe = diag(m2

e,m
2
µ,m

2
τ ) and UT

ν mνUν = diag(m1,m2,m3)

leads to non-diagonal charged current interactions

l̄W−/ UPMNS ν with UPMNS = U †
eUν
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Parametrization of lepton mixing

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij

Jarlskog invariant JCP

JCP = Im
[

UPMNS,11U
∗
PMNS,13U

∗
PMNS,31UPMNS,33

]

=
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ
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Parametrization of lepton mixing

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij

Majorana invariant I1

I1 = Im
[

U2
PMNS,12

(

U∗
PMNS,11

)2
]

= sin2 θ12 cos
2 θ12 cos

4 θ13 sinα

– p. 5/79



Parametrization of lepton mixing

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij

Majorana invariant I2

I2 = Im
[

U2
PMNS,13

(

U∗
PMNS,11

)2
]

= sin2 θ13 cos
2 θ12 cos

2 θ13 sinβ
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Data on lepton mixing

Latest global fits (Capozzi et al. (’13))
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Data on lepton mixing

Latest global fits NH [IH] (Capozzi et al. (’13))

best fit and 1σ error 3σ range

sin2 θ13 = 0.0234[9]
+0.0022[1]
−0.0018[21] 0.0177[8] ≤ sin2 θ13 ≤ 0.0297[300]

sin2 θ12 = 0.308+0.017
−0.017 0.259 ≤ sin2 θ12 ≤ 0.359

sin2 θ23 =







0.425[37]
+0.029[59]
−0.027[9]

[0.531 ≤ sin2 θ23 ≤ 0.610]
0.357[63] ≤ sin2 θ23 ≤ 0.641[59]

δ = 1.39[5]π
+0.33[24]π
−0.27[39]π 0 ≤ δ ≤ 2π

α , β unconstrained

– p. 9/79



Data on lepton mixing

Latest global fits NH [IH] (Capozzi et al. (’13))

||UPMNS|| ≈









0.82 0.55 0.15

0.40[39] 0.65 0.64[5]

0.40[2] 0.52 0.75[4]









and no information on Majorana phases

⇓
Mismatch in lepton flavour space is large!
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General idea

• interpret this mismatch in lepton flavour space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a combination of a

finite, discrete, non-abelian symmetry Gf and CP
(Feruglio et al. (’12,’13), Holthausen et al. (’12), Grimus/Rebelo (’95))

[Masses do not play a role in this approach.]
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General idea

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

Gν

charged leptons

Ge
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General idea

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

assume 3 generations

of Majorana neutrinos

charged leptons

distinguish 3 generations
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General idea

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

An example: µτ reflection symmetry (Harrison/Scott (’02,’04), Grimus/Lavoura (’03))
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General idea

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• two/three non-trivial mixing angles ⇒ irred 3-dim rep of Gf

• "maximize" predictability of approach
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General idea

Definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

with X is unitary and symmetric
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General idea

Definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

with X is unitary and symmetric;
apply CP twice

φ
CP−→ Xφ⋆ CP−→ XX⋆φ = φ
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General idea

Definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

with X is unitary and symmetric.
Realize direct product of Z2 ⊂ Gf and CP
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General idea

Definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

with X is unitary and symmetric.
Realize direct product of Z2 ⊂ Gf and CP ; Z generates Z2

φ
CP−→ Xφ⋆ Z2−→ XZ⋆φ⋆ and φ

Z2−→ Zφ
CP−→ ZXφ⋆
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General idea

Definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

with X is unitary and symmetric.
Realize direct product of Z2 ⊂ Gf and CP ; Z generates Z2

XZ⋆ − ZX = 0
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General idea

• neutrino sector: Z2 × CP preserved

neutrino mass term νa mν,ab νb

is invariant under να → Zαβ νβ

is invariant under generalized CP transformation να → Xαβ ν
⋆
β

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν fulfills

ZTmνZ = mν and XmνX = m⋆
ν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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General idea

• neutrino sector: Z2 × CP preserved and generated by (ν = Ων ν
′)

X = ΩνΩ
T
ν and Z = ΩνZ

diagΩ†
ν

Zdiag = diag (−1, 1,−1) and Ων unitary

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν fulfills

Zdiag[ΩT
ν mνΩν ]Z

diag = [ΩT
ν mνΩν ] and [ΩT

ν mνΩν ] = [ΩT
ν mνΩν ]

⋆

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved and generated by

Qe = ΩeQ
diag
e Ω†

e with Ωe unitary

Qdiag
e = diag (ωne

N , ω
nµ

N , ωnτ

N )

and ne 6= nµ 6= nτ and ωN = e2πi/N
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e(Qe)m

†
emeΩe(Qe) is diagonal
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General idea

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e(Qe)m

†
emeΩe(Qe) is diagonal

• conclusion: PMNS mixing matrix reads

UPMNS = Ω†
eΩνR(θ)Kν in l̄W−/ UPMNS ν
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General idea

UPMNS = Ω†
eΩνR(θ)Kν

• 3 unphysical phases are removed by Ωe → ΩeKe

• UPMNS contains one parameter θ

• permutations of rows and columns of UPMNS possible

⇓

Predictions:
Mixing angles and CP phases are predicted

in terms of one parameter θ only,
up to permutations of rows/columns
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General idea: consistency conditions

We want to consistently combine Gf and the generalized

CP transformation φi
CP−→ Xijφ

⋆
j

⇓
"closure" relations have to hold
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General idea: consistency conditions

We want to consistently combine Gf and the generalized

CP transformation φi
CP−→ Xijφ

⋆
j

⇓
"closure" relations have to hold:

assume φ transforms as 3-dim rep of Gf , then

φ
CP−→ Xφ⋆ Gf−→ XA⋆φ⋆ CP−→ XA⋆X⋆φ = (X⋆AX)

⋆
φ
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General idea: consistency conditions

We want to consistently combine Gf and the generalized

CP transformation φi
CP−→ Xijφ

⋆
j

⇓
"closure" relations have to hold:

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf
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General idea: consistency conditions

We want to consistently combine Gf and the generalized

CP transformation φi
CP−→ Xijφ

⋆
j

⇓
"closure" relations have to hold:

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf

compare to relation for having direct product of Z2 and CP

XZ⋆ − ZX = 0
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General idea: consistency conditions

We want to consistently combine Gf and the generalized

CP transformation φi
CP−→ Xijφ

⋆
j

⇓
"closure" relations have to hold:

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf

compare to relation for having direct product of Z2 and CP

(X⋆ZX)
⋆
= Z
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General idea: consistency conditions

• fulfilling these conditions ensures a consistent theory, but can
lead to enlarged symmetry group

• additional requirement in order not to change representation
content of Gf (Chen et al. (’14)):

all representations transform into
complex conjugate under CP
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General idea: consistency conditions

• fulfilling these conditions ensures a consistent theory, but can
lead to enlarged symmetry group

• additional requirement in order not to change representation
content of Gf (Chen et al. (’14)):

all representations transform into
complex conjugate under CP

[mathematically: mapping induced via X has to be ’class-
inverting’ automorphism (A′ ∼ A−1)]
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General idea: consistency conditions

• fulfilling these conditions ensures a consistent theory, but can
lead to enlarged symmetry group

• additional requirement in order not to change representation
content of Gf (Chen et al. (’14)):

all representations transform into
complex conjugate under CP

• if not fulfilled or not possible to fulfill for Gf

⇒ constraints on representations

[S4 fulfilled;
∆(48) not fulfilled in general, only for certain representations]
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Study ofS4 andCP

Generators in rep. 3′:
(

ω = e2πi/3
)

S =
1

3









−1 2 2

2 −1 2

2 2 −1









, T =









1 0 0

0 ω2 0

0 0 ω









, U =









1 0 0

0 0 1

0 1 0









which fulfill

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1
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Study ofS4 andCP

A transformation X in rep. 3′ for Z = S is

X3′ =









1 0 0

0 0 1

0 1 0









which fulfills
XX† = XX⋆ = 1

(X⋆AX)⋆ = A′ , XZ⋆ − ZX = 0

– p. 42/79



Study ofS4 andCP

A transformation X in rep. 3′ for Z = S is

X3′ =









1 0 0

0 0 1

0 1 0









which fulfills
XX† = XX⋆ = 1

(X⋆AX)⋆ = A′ , XZ⋆ − ZX = 0

Residual symmetry Ge is generated by T .
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Study ofS4 andCP

Maximal θ23 and δ from Ge = Z3, Z = S and X3′

(Harrison/Scott (’02,’04), Grimus/Lavoura (’03), Feruglio et al. (’12,’13))

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ + i
√
3 sin θ

√
2 − sin θ − i

√
3 cos θ

− cos θ − i
√
3 sin θ

√
2 − sin θ + i

√
3 cos θ









Kν

sin2 θ13 =
2

3
sin2 θ , sin2 θ12 =

1

2 + cos 2θ
, sin2 θ23 =

1

2

and

| sin δ| = 1 , |JCP | =
| sin 2θ|
6
√
3

, sinα = 0 , sinβ = 0
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Study ofS4 andCP

Maximal θ23 and δ from Ge = Z3, Z = S and X3′

(Harrison/Scott (’02,’04), Grimus/Lavoura (’03), Feruglio et al. (’12,’13))

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ + i
√
3 sin θ

√
2 − sin θ − i

√
3 cos θ

− cos θ − i
√
3 sin θ

√
2 − sin θ + i

√
3 cos θ









Kν

sin2 θ13 ≈ 0.023 , sin2 θ12 ≈ 0.341 , sin2 θ23 =
1

2

and

| sin δ| = 1 , |JCP | ≈ 0.0348 , sinα = 0 , sinβ = 0 for θ ≈ 0.185
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Study ofS4 andCP

Maximal θ23 and δ from Ge = Z3, Z = S and X3′ (Feruglio et al. (’12,’13))

!!""

##

!

!

!
sin

2
Θ12

sin Θ13

3Σ

3Σ

Θ # 0 Θbf

Θ # Π "4

Θ # Π "6

Θ # Π "3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Study ofS4 andCP

Maximal θ23 and δ from Ge = Z3, Z = S and X3′ (Feruglio et al. (’12,’13))

!!

""

##

!!

!

JCP

sin
2
Θ12

3Σ

Θ # 0

Θbf

Θ # Π "4
Θ # Π "3

Θ # Π "6

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Study ofS4 andCP

Maximal θ23 and δ from Ge = Z3, Z = S and X3′ (Feruglio et al. (’12,’13))

!!

""

##

!!

""

!!

!

sin Θ13

JCP
3Σ

Θ # 0

Θbf

Θ # Π "4Θ # Π "6

Θ # Π "3

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Study of∆(48) andCP

Generators in rep. 3:
(

ω = e2πi/3
)

(Miller et al. (’16), Fairbairn et al. (’64), Luhn et al. (’07))

a =









1 0 0

0 ω 0

0 0 ω2









, c =
1

3









1 1−
√
3 1 +

√
3

1 +
√
3 1 1−

√
3

1−
√
3 1 +

√
3 1









, d = a−1ca

which satisfy

a3 = 1 , c4 = 1 , d4 = 1 ,

cd = dc , aca−1 = c−1d−1
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Study of∆(48) andCP

A transformation X in rep. 3 for Z = c2 is (Ding/Zhou (’13))

X3 = d









1 0 0

0 0 1

0 1 0









which fulfills
XX† = XX⋆ = 1

(X⋆AX)
⋆
= A′ , XZ⋆ − ZX = 0

Residual symmetry Ge is generated by a.
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Study of∆(48) andCP

Angles and phases from Ge = Z3, Z = c2 and X3 (Ding/Zhou (’13))

||UPMNS || =
1√
6











1
√

2

√

4− (
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4 + (
√
2 +

√
6) cos 2θ

1
√

2

√

4 + (−
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4− (−
√
2 +

√
6) cos 2θ

√

2 +
√
2 cos 2θ

√
2

√

2−
√
2 cos 2θ











sin2 θ13 =
1

12

(

4 + (
√
2 +

√
6) cos 2θ

)

, sin2 θ12 =
4

8− (
√
2 +

√
6) cos 2θ

,

sin2 θ23 =
1

2

(

1 +

√
6(
√
3− 1) cos 2θ

8− (
√
2 +

√
6) cos 2θ

)

, |JCP | =
| sin 2θ|
6
√
3
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Study of∆(48) andCP

Angles and phases from Ge = Z3, Z = c2 and X3 (Ding/Zhou (’13))

||UPMNS || =
1√
6











1
√

2

√

4− (
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4 + (
√
2 +

√
6) cos 2θ

1
√

2

√

4 + (−
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4− (−
√
2 +

√
6) cos 2θ

√

2 +
√
2 cos 2θ

√
2

√

2−
√
2 cos 2θ











|sinα| =
∣

∣

∣

∣

∣

1 +
√
3− 2

√
2 cos 2θ + (−1 +

√
3) sin 2θ

−4 + (
√
2 +

√
6) cos 2θ

∣

∣

∣

∣

∣

,

|sinβ| =
∣

∣

∣

∣

2 sin 2θ

−4 + (2 +
√
3) cos2 2θ

∣

∣

∣

∣
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Study of∆(48) andCP

Angles and phases from Ge = Z3, Z = c2 and X3 (Ding/Zhou (’13))

||UPMNS || =
1√
6











1
√

2

√

4− (
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4 + (
√
2 +

√
6) cos 2θ

1
√

2

√

4 + (−
√
2 +

√
6) cos 2θ

√
2 1

√

2

√

4− (−
√
2 +

√
6) cos 2θ

√

2 +
√
2 cos 2θ

√
2

√

2−
√
2 cos 2θ











sin2 θ13 ≈ 0.023 , sin2 θ12 ≈ 0.341 , sin2 θ23 ≈ 0.426 , |JCP | ≈ 0.0254 ,

and

| sin δ| ≈ 0.735 , | sinα| ≈ 0.732 , | sinβ| ≈ 1 for θ ≈ 1.437
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Study of∆(48) andCP

Angles and phases from Ge = Z3, Z = c2 and X3 (Ding/Zhou (’13))
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Study of∆(48) andCP

Angles and phases from Ge = Z3, Z = c2 and X3 (Ding/Zhou (’13))
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Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))
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Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• C and CP violation:
Yukawa couplings of right-handed neutrinos provide
source of CP violation
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Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• departure from thermal equilibrium:
Yukawa interactions of right-handed neutrinos have slow
enough rate Γ < H

– p. 60/79



Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• baryon number violation:
Majorana masses violate lepton number so that lepton
asymmetry is generated which is partially converted into
baryon asymmetry via sphaleron processes
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Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• simplest scenario:

thermal leptogenesis in which asymmetry stems
from N1 decay (with no flavour effects)
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Basics of leptogenesis

• baryon asymmetry of the Universe is measured well

YB =
nB − nB̄

s

∣

∣

∣

∣

0

= (8.77±0.24)×10−11
(WMAP (’08), Planck (’13))

• this asymmetry can be explained by decay of heavy
right-handed neutrinos (Fukugita/Yanagida (’86))

• the three Sakharov conditions are fulfilled (Sakharov (’67))

• simplest scenario:

YB ∼ 10−3 ǫ η with ǫ CP asymmetry , η washout factor
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Basics of leptogenesis

• CP asymmetry ǫ

ǫαα =
Γ(N1 → Hlα)− Γ(N1 → H⋆ l̄α)

Γ(N1 → Hl) + Γ(N1 → H⋆ l̄)

• diagrammatically: the CP asymmetry arises from
interference of tree-level diagram

×N1

yD

H

lα
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Basics of leptogenesis

• CP asymmetry ǫ

ǫαα =
Γ(N1 → Hlα)− Γ(N1 → H⋆ l̄α)

Γ(N1 → Hl) + Γ(N1 → H⋆ l̄)

• diagrammatically: the CP asymmetry arises from
interference of tree-level diagram and one-loop diagrams

N1

H

y⋆D yD yD

lβ Nj×
H

lα

+
N1

H

lβ

Nj
×

lα

H

y⋆D yD

yD
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Basics of leptogenesis

• CP asymmetry ǫ

ǫαα =
Γ(N1 → Hlα)− Γ(N1 → H⋆ l̄α)

Γ(N1 → Hl) + Γ(N1 → H⋆ l̄)

• computation of ǫ in case of unflavoured leptogenesis

ǫ =
1

8π

∑

j 6=1

Im
(

(ŶDŶ †
D)2j1

)

(ŶDŶ †
D)11

f(xj)

with ŶD = U †
RYD and U †

RMRU
⋆
R = diag(M1,M2,M3)
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Leptogenesis in flavour models

• leptogenesis has been studied in several models with A4 or
S4 flavour symmetry
(Jenkins/Manohar (’08), H et al. (’09), Bertuzzo et al. (’09), Aristizabal Sierra et al. (’09))

• Gf → Ge in charged lepton sector and me is diagonal

• Gf → Gν = Z2(×Z2) in neutrino sector and MR encodes
mixing, while YD has trivial flavour structure
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Leptogenesis in flavour models

• leptogenesis has been studied in several models with A4 or
S4 flavour symmetry
(Jenkins/Manohar (’08), H et al. (’09), Bertuzzo et al. (’09), Aristizabal Sierra et al. (’09))

• Gf → Ge in charged lepton sector and me is diagonal

• Gf → Gν = Z2(×Z2) in neutrino sector and MR encodes
mixing, while YD has trivial flavour structure

• for generations in 3 and YD invariant under Gf ǫ vanishes
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Leptogenesis in flavour models

• leptogenesis has been studied in several models with A4 or
S4 flavour symmetry
(Jenkins/Manohar (’08), H et al. (’09), Bertuzzo et al. (’09), Aristizabal Sierra et al. (’09))

• Gf → Ge in charged lepton sector and me is diagonal

• Gf → Gν = Z2(×Z2) in neutrino sector and MR encodes
mixing, while YD has trivial flavour structure

• if residual Gν is broken at level ε,

ǫ ∝ ε2 for unflavoured leptogenesis

[ǫ ∝ ε for flavoured leptogenesis]
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Leptogenesis in flavour models

• leptogenesis has been studied in several models with A4 or
S4 flavour symmetry
(Jenkins/Manohar (’08), H et al. (’09), Bertuzzo et al. (’09), Aristizabal Sierra et al. (’09))

• Gf → Ge in charged lepton sector and me is diagonal

• Gf → Gν = Z2(×Z2) in neutrino sector and MR encodes
mixing, while YD has trivial flavour structure

• if residual Gν is broken at level ε,

ǫ ∝ ε2 for unflavoured leptogenesis

• if CP is also a symmetry of the theory, constraints on phases
and e.g. on sign of ǫ are expected
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Leptogenesis in models with flavour andCP

Consider the following scenario

• Gf & CP → Ge in charged lepton sector and me is diagonal

• Gf & CP → Gν = Z2 × CP in neutrino sector and MR

encodes mixing, while YD has trivial flavour structure

• assume small breaking in YD at level ε which is real;
e.g. for our example Gf = S4

Y 0
D + δYD =









y0 + a ε 0 0

0 0 y0 + b ε

0 y0 + c ε 0









• fit of reactor mixing angle requires 0.16 . θ . 0.21
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Leptogenesis in models with flavour andCP

Result for ǫ from N1 decays vs lightest neutrino mass m0

ε = λ4 ≈ 1.6 × 10−3; normal ordering and best fit values of ∆m2
ij

(Capozzi et al. (’13)) assumed

Ε

m0
0.00 0.02 0.04 0.06 0.08 0.10

-0.00004

-0.00002

0

0.00002

0.00004
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Leptogenesis in models with flavour andCP

Consider the following scenario

• Gf & CP → Ge in charged lepton sector and me is diagonal

• Gf & CP → Gν = Z2 × CP in neutrino sector and MR

encodes mixing, while YD has trivial flavour structure

• assume small breaking in YD at level ε which is real;
e.g. for our example Gf = ∆(48)

Y 0
D+δYD =









y0 + (s+ 2t) ε 0 0

0 y0 + (s− t−
√
3u) ε 0

0 0 y0 + (s− t+
√
3u) ε









• fit of reactor mixing angle constrains θ: 1.40 . θ . 1.48
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Leptogenesis in models with flavour andCP

Result for ǫ from N1 decays vs lightest neutrino mass m0

ε = λ4 ≈ 1.6 × 10−3; normal ordering and best fit values of ∆m2
ij

(Capozzi et al. (’13)) assumed
Ε

m0
0.00 0.02 0.04 0.06 0.08 0.10

-0.00004

-0.00002

0

0.00002

0.00004

Notice: phases in Kν can change sign of ǫ
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Leptogenesis in models with flavour andCP

We can understand this behaviour:

Look at Im
(

(ŶDŶ †
D)2j1

)

; for j = 2

2 (−1)k1y20 ε2
(

−t2 − 2tu+ u2 −
√
2(t2 + u2) cos 2θ + (t2 − 2tu− u2) sin 2θ

)

+O(ε3)

and for j = 3

4 (−1)k2y20 ε2
(

−t2 + u2
)

sin 2θ +O(ε3)
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Leptogenesis in models with flavour andCP

We can understand this behaviour:

Now expand for θ = π/2 + κ up to κ; for j = 2

2 (−1)k1y20 ε2
(

t2(−1 +
√
2− 2κ) + 2 t u (−1 + 2κ) + u2(1 +

√
2 + 2κ)

)

+O(κ2)

and for j = 3
8 (−1)k2 y20 ε2(t− u)(t+ u)κ
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Leptogenesis in models with flavour andCP

We can understand this behaviour:

Now expand for θ = π/2 + κ up to κ; for j = 2

2 (−1)k1y20 ε2
(

t

√

−1 +
√
2− 2κ− u

√

1 +
√
2 + 2κ

)2

+O(κ2)

and for j = 3

suppressed by κ

The loop function f(xj) acts as weighting factor of the different
contributions.
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Conclusions & outlook

• approach with flavour and CP symmetry strongly constrains
lepton mixing

• results for Gf = S4 or Gf = ∆(48) are encouraging

• leptogenesis can be studied in this approach
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Conclusions & outlook

• continue study of different groups Gf (∆(3n2) and ∆(6n2))
and CP:
new mixing patterns, consistent definition of CP, ...

• explore more phenomena which involve CP phases:
0νββ, electric dipole moments, phases of soft supersymme-
try breaking terms, CKM phase, ...

Thank you for your attention.
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