Neutrinos and Abelian Gauge Symmetries

Julian Heeck

24.10.2014 - ULB

UNIVERSITÉ LIBRE DE BRUXELLES **ULB**

Standard Model of Particle Physics

Beautiful and simple:

Standard Model of Particle Physics

Not shown:

- Gauge group $SU(3)_{color} \times SU(2)_{isospin} \times U(1)_{hypercharge};$ $\Rightarrow 8 + 3 + 1$ spin-1 bosons with field strength $F_{\mu\nu}$,
- Three copies of spin- $\frac{1}{2}$ Weyl fields (families/generations) in rep.

$$\Psi_{1,2,3} \sim \underbrace{(\mathbf{3},\mathbf{2},\frac{1}{6}) \oplus (\mathbf{3},\mathbf{1},-\frac{2}{3}) \oplus (\mathbf{3},\mathbf{1},\frac{1}{3})}_{quarks} \oplus \underbrace{(\mathbf{1},\mathbf{2},-\frac{1}{2}) \oplus (\mathbf{1},\mathbf{1},1)}_{leptons},$$

- One complex spin-0 field $\phi \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2})$ which breaks $SU(2) \times U(1) \rightarrow U(1)_{\text{EM}}$ via $\langle \phi \rangle \simeq 250 \text{ GeV}$.
- About 18 free parameters, all measured as of 2013 (Brout–Englert–Higgs boson mass).

Standard Model of Particle Physics

Also not shown (because beyond SM):

- Neutrinos have mass and mix.
- Dark matter.
- Baryon asymmetry of our Universe.

Symmetries of the Standard Model

- \mathcal{L}_{SM} renormalizable \Rightarrow only mass dimension \leq 4 couplings.
- $\bullet~\mathcal{L}_{\text{SM}}$ invariant under phase shifts of quarks and individual leptons.

 $U(1)^4$: B, L_e , L_μ , and L_τ classically conserved in the Standard Model.

• Nonperturbative instanton/sphaleron solutions break $\Delta(B+L) = 6$.

 $U(1)_{B-L} imes U(1)_{L_e-L_{\mu}} imes U(1)_{L_{\mu}-L_{\tau}}$ global symmetry of quantum SM.

• After introducing three right-handed neutrinos ν_R :

 $U(1)_{B-L} imes U(1)_{L_e-L_{\mu}} imes U(1)_{L_{\mu}-L_{\tau}}$ anomaly free *local* symmetry.¹

(Neutrinos automatically massive due to ν_R .)

Breaking \Rightarrow neutrino nature, hierarchies, mixing, baryon asymmetry,...

¹J.H., T. Araki, J. Kubo, JHEP **1207** (2012) [arXiv:1203.4951].

Outline

Neutrinos and abelian gauge symmetries

Typically simple models:

- Few new particles and parameters.
- Renormalizable.
- Z' gives additional pheno.

Unflavored	Symmetries	
Flavored	Symmetries	
Dark	Symmetries	

Baryon and Lepton Number

- *B* and *L* classically conserved in the Standard Model.
- B + L theoretically broken non-perturbatively: $\Delta(B + L) = 6$.
- B L globally conserved.

Fate of fundamental $U(1)_{B-L}$ from **experiments**. Linked to neutrino nature and matter–antimatter asymmetry.

• B - L locally conserved after adding three ν_R . \Rightarrow Neutrinos massive!

Three possibilities for (local) $U(1)_{B-L}$:

- Unbroken B L: Dirac neutrinos + neutrinogenesis.
- **Q** Majorana B L: $\Delta(B L) = 2$, Majorana ν + leptogenesis.
- Solution Dirac B L: $\Delta(B L) = n \neq 2$, Dirac ν + Dirac leptogenesis.

Unbroken B - L

Almost² never considered, but very simple:³

- Neutrinos are Dirac, with Yukawa couplings $Y_{
 u} \sim m_{
 u}/\langle H
 angle \lesssim 10^{-11}.$
- Baryon asymmetry via neutrinogenesis:⁴
 - New heavy scalar doublets decay so that $\Delta(B L) = \Delta L = 0$, but $\Delta L_{\text{left}} = -\Delta L_{\text{right}} \neq 0$.

• Right-handed ν_R not thermalized due to tiny Yukawas. \Rightarrow Sphalerons only see ΔL_{left} , generate ΔB via $\Delta(B + L) = 6!$

²D. Feldman, P. Fileviez Perez, and P. Nath, arXiv:1109.2901.
³J.H., arXiv:1408.6845.
⁴K. Dick, M. Lindner, M. Ratz, and D. Wright, arXiv:hep-ph/9907562.

Unflavored Symmetries	Unbroken B – L
Flavored Symmetries	
Dark Symmetries	

Signatures

- No 0
 u2eta or other $\Delta(B-L)
 eq 0$ processes...
- Z' with tiny coupling $lpha' \lesssim 10^{-50}$ or Stückelberg mass $M_{Z'}$:
 - Introduce *real* scalar σ with gauge trafo $\sigma \rightarrow \sigma + M_{Z'}\theta(x)$.

$$\Delta \mathcal{L} = \frac{1}{2} \left(M_{Z'} Z'^{\mu} + \partial^{\mu} \sigma \right) \left(M_{Z'} Z'_{\mu} + \partial_{\mu} \sigma \right)$$

is gauge invariant $(Z'_{\mu} o Z'_{\mu} - \partial_{\mu} heta)$.

• Mass term $\frac{1}{2}M_{Z'}^2 Z'_{\mu} Z'^{\mu}$ is just gauge fixing, not breaking.

Abelian gauge bosons can have a mass without symmetry breaking.

- $M_{Z'}/g'$ not connected to $m_{
 u}$ or leptogenesis \Rightarrow no preferred scale!

\Rightarrow Unbroken (local) B - L perfectly valid!⁵

⁵J.H., arXiv:1408.6845.

Unbroken B — L Majorana B — L Dirac B — L

Big Bang Nucleosynthesis

- ν_R are light (Dirac neutrinos) $\rightarrow N_{eff} \simeq 6$ for strong Z' interactions.
- Light Z' also contributes to N_{eff} .
- BBN ($\mathcal{T} \sim 1 \, \mathrm{MeV})$ limit: $\mathit{N}_{eff} <$ 4 at 95% C.L.⁶

Thermally averaged rate via Z':

• Demand $\langle \Gamma(\overline{f}f \leftrightarrow \overline{\nu}_R \nu_R) \rangle < H(T) \sim T^2/M_{\text{Pl}}$ "at" BBN.

⁶Mangano, Serpico, PLB (2011), [arXiv:1103.1261].

Unflavored Symmetries Un Flavored Symmetries M Dark Symmetries D

Unbroken B - LMajorana B - LDirac B - L

The Money Shot

Applicable to any Z'_{B-L} (BBN, RG/ ν , solid SN1987 depend on number of light ν_R).⁷

⁷J.H., arXiv:1408.6845.

Unflavored Symmetries U Flavored Symmetries Dark Symmetries D

Unbroken *B — L* Majorana *B — L* Dirac *B — L*

Majorana B - L

• New scalar $\phi_{B-L=2}$ to break $U(1)_{B-L}$ by two units.

$$\mathcal{L} \supset Y_{\nu} \,\overline{\nu}_R H L + \frac{1}{2} Y_R \,\overline{\nu}_R \nu_R^c \,\phi_{B-L=2}^* + \text{h.c.}$$

• Spontaneous symmetry breaking gives mass matrix for (ν_L, ν_R^c) :

$$\mathcal{M} = \begin{pmatrix} 0 & Y_{\nu}^{\mathsf{T}} \langle H \rangle \\ Y_{\nu} \langle H \rangle & Y_{R} \langle \phi_{B-L=2} \rangle \end{pmatrix}.$$

• High scale $Y_R \langle \phi_{B-L=2} \rangle \gg Y_\nu \langle H \rangle$: small seesaw Majorana mass for active neutrinos:

$$\mathcal{M}_{\nu} \simeq - rac{\langle H
angle^2}{\langle \phi_{B-L=2}
angle} Y_{\nu}^T Y_R^{-1} Y_{\nu}.$$

• Signature of Majorana B - L: neutrinoless double beta decay

$$(A,Z) \rightarrow (A,Z+2)+2e^- \qquad \Leftrightarrow \qquad \Delta(B-L)=2.$$

Unbroken B - LMajorana B - LDirac B - L

Majorana B - L: Leptogenesis

$$\mathcal{L} \supset Y_{\nu} \,\overline{\nu}_R HL + rac{1}{2} Y_R \,\overline{\nu}_R \nu_R^c \,\phi_{B-L=2}^* + ext{h.c.}$$

• Heavy ($M_R \simeq Y_R \langle \phi_{B-L=2} \rangle \gtrsim 10^8 \,\text{GeV}$) Majorana neutrinos $N = \nu_R + \nu_R^c$ decay out-of-equilibrium in early Universe.

- If CP violated in loops: Γ(N → HL) ≠ Γ(N → H*L̄)
 ⇒ Lepton asymmetry Δ_L!
- Sphalerons with $\Delta B = \Delta L = 3$ above $T \gtrsim \text{TeV}$ transfer Δ_L to baryon asymmetry Δ_B .

Dirac B - L

Break B - L, but by $n \neq 2$ units.⁸ \Rightarrow Lepton number violating Dirac neutrinos.

- All fermions in SM+ ν_R are odd under B L \Rightarrow only even $\Delta(B - L)$ possible.
 - \Rightarrow Lowest order new processes: $\Delta(B-L) = 4$:
 - $\mathcal{O}_{d=6}: \quad \overline{\nu}_R^c \nu_R \ \overline{\nu}_R^c \nu_R$
 - $\mathcal{O}_{d=8}: \quad |H|^2 \ \overline{\nu}_R^c \nu_R \ \overline{\nu}_R^c \nu_R \ , \quad (\overline{L}^c \tilde{H}^*) (\tilde{H}^\dagger L) \ \overline{\nu}_R^c \nu_R \ , \quad F_Y^{\mu\nu} \overline{\nu}_R^c \sigma_{\mu\nu} \nu_R \ \overline{\nu}_R^c \nu_R$
 - $\begin{aligned} \mathcal{O}_{d=10} : \quad & (\overline{L}^{c}\widetilde{H}^{*})(\widetilde{H}^{\dagger}L) \ (\overline{L}^{c}\widetilde{H}^{*})(\widetilde{H}^{\dagger}L), \quad |H|^{2}(\overline{L}^{c}\widetilde{H}^{*})(\widetilde{H}^{\dagger}L) \ \overline{\nu}_{R}^{c}\nu_{R}, \\ & F_{Y}^{\mu\nu}(\overline{L}^{c}\widetilde{H}^{*})(\widetilde{H}^{\dagger}L) \ \overline{\nu}_{R}^{c}\sigma_{\mu\nu}\nu_{R}, \quad W_{a}^{\mu\nu}(\overline{L}^{c}\widetilde{H}^{*})(\widetilde{H}^{\dagger}\tau^{a}L) \ \overline{\nu}_{R}^{c}\sigma_{\mu\nu}\nu_{R}, \\ & (\overline{u}_{R}d_{R}^{c})(\overline{d}_{R}\widetilde{H}^{\dagger}L)(\overline{\nu}_{R}^{c}\nu_{R}), \ldots \end{aligned}$

$$\mathcal{O}_{d=18}: \quad (\overline{d}_R d_R^c \ \overline{u}_R^c u_R \ \overline{e}_R^c e_R) (\overline{d}_R d_R^c \ \overline{u}_R^c u_R \ \overline{e}_R^c e_R) , \ldots$$

$$\mathcal{O}_{d=20}: \quad \left[(\overline{(D_{\mu}L)}^{c} \tilde{H}) (H^{\dagger} D_{\nu}L) \right]^{2} \supset (\overline{e}_{L}^{c} W_{\mu}^{+} W_{\nu}^{+} e_{L}) (\overline{e}_{L}^{c} W^{+\mu} W^{+\nu} e_{L}), \dots$$

⁸Witten, hep-ph/0006332.

Unflavored Symmetries	
Flavored Symmetries	
Dark Symmetries	Dirac $B - L$

UV Completion

• One scalar $\phi_{B-L=4}$ to break B-L, one scalar $\chi_{B-L=-2}$ as mediator.

$$\mathcal{L} \supset y_{\alpha\beta} \,\overline{L}_{\alpha} H \nu_{R,\beta} + \kappa_{\alpha\beta} \, \chi_{B-L=-2} \,\overline{\nu}_{R,\alpha} \nu_{R,\beta}^{\mathsf{c}} + \mathsf{h.c.}$$

- Neutrinos are Dirac (and $\Delta L = 2$ forbidden) if $\langle \chi_{B-L=-2} \rangle = 0$.
- Scalar potential $V \supset \mu \phi_{B-L=4}(\chi_{B-L=-2})^2 + h.c.$
- Lepton number violation $\Delta L = 4$ still possible!⁹

- Extension to left-right model can enhance rates.
- ⁹J.H. and W. Rodejohann, EPL **103**, 32001 (2013) [arXiv:1306.0580].

Unflavored	Symmetries	
Flavored	Symmetries	
Dark	Symmetries	Dirac $B-L$

Phenomenology of LNV Dirac Neutrinos

How to check for $\Delta L = 4$?

- Collider processes:
 - LHC: $pp \rightarrow W^-W^-W^-W^-\ell^+\ell^+\ell^+\ell^++X$,
 - Like-sign lepton collider: $e^-e^- \rightarrow W^-W^-W^-W^-\ell^+\ell^+$.
- Nuclear decays $(0\nu 4\beta?)$.¹⁰
- Rare meson decays etc.?

All tough, many particles in final state! (Even harder for $\Delta L > 4...$)

 $\Delta L = 4$ can however easily be relevant in the early Universe \Rightarrow new Dirac leptogenesis mechanism!¹¹

 ¹⁰J.H. and W. Rodejohann, EPL **103**, 32001 (2013) [arXiv:1306.0580].
 ¹¹J.H., PRD **88**, 076004 (2013) [arXiv:1307.2241].

Unbroken *B — L* Majorana *B — L* Dirac *B — L*

Dirac B - L: Leptogenesis

Scalar potential V(H, φ, χ) ⊃ −μφ_{B-L=4}(χ_{B-L=-2})² breaks complex χ_{B-L=-2} = (Ξ₁ + i Ξ₂)/√2 into two real scalars with mass

$$m_1^2 = m_c^2 - 2\mu \langle \phi_{B-L=4} \rangle, \qquad m_2^2 = m_c^2 + 2\mu \langle \phi_{B-L=4} \rangle$$

 Heavy mediator scalar Ξ_j decays to ν_Rν_R or ν
_Rν_R out-of-equilibrium in early Universe.

• *CP* violation requires second scalar $\chi_{B-L=-2}$.

$$Y_{
u_R} \equiv rac{n_{
u_R}}{s} \sim rac{1}{g_*} \; rac{\Gamma\left(\Xi_i
ightarrow
u_R
u_R\right) - \Gamma\left(\Xi_i
ightarrow
u_R^c
u_R^c\right)}{\Gamma\left(\Xi_i
ightarrow
u_R
u_R\right) + \Gamma\left(\Xi_i
ightarrow
u_R^c
u_R^c\right)}.$$

Asymmetry in ν_R . \checkmark How to translate to baryon asymmetry?

Baryon Asymmetry

• Dirac-Yukawa coupling $Y_
u = m_
u/\langle H
angle$ too small to equilibrate $u_R\dots$

Add second scalar doublet H_2 with large Yukawa $\overline{L}H_2\nu_R$:

- Neutrinophilic H₂ with small VEV ⟨H₂⟩ ~ 1 eV.¹²
 ⇒ Dirac neutrinos light with large Yukawas.
- H_2 moves Y_{ν_R} to Y_{ν_L} .
- Sphalerons move Y_{ν_L} to Y_B .
- \Rightarrow Different from neutrinogenesis!
 - Necessary thermalization of $u_R \Rightarrow N_{\mathrm{eff}} > 3!$
 - 3.14 \lesssim N_{eff} \lesssim 3.29 depending on H₂⁺ mass and Yukawa coupling.
 - Specific collider signatures of neutrinophilic H_2 .¹³

¹³Davidson and Logan, PRD 80 (2009), arXiv:0906.3335.

 $^{^{12}\}mathsf{E.}$ Ma, PRL $\mathbf{86}$ (2001), F. Wang, W. Wang, J. M. Yang, EPL $\mathbf{76}$ (2006), S. Gabriel and S. Nandi, PLB $\mathbf{655}$ (2007).

Unflavored Summary

name	$\Delta(B-L)$	neutrino	BAU	signatures
Unbroken <i>B</i> – <i>L</i>	0	Dirac	neutrinogenesis	$Z^{\prime}(?),\;N_{ m eff}\simeq 3$
Majorana <i>B – L</i>	2	Majorana	leptogenesis	0 u2eta
Dirac <i>B</i> – <i>L</i>	> 2, e.g. 4	Dirac	Dirac leptogenesis	0 $ u$ 4 eta , N $_{ m eff}\gtrsim$ 3.14

- B L mystery: global, local, unbroken, broken by 2, 4, ... units?
- Currently testing: $\Delta L = 2 \text{ via } 0\nu 2\beta$.
- $\Delta L \ge$ 4 way more challenging (experimentally and theoretically).
- Lepton number violation not synonymous with Majorana neutrinos.
- $\Delta L = 4$ lowest LNV of Dirac neutrinos.
- New Dirac leptogenesis (3.14 $\leq N_{\rm eff} \leq$ 3.29).

Neutrino Hierarchies Texture Zeros

Let's add some flavor...

Neutrinos and abelian flavor symmetries

flavored $\left[U(1)_{B-L} imes U(1)_{L_e-L_\mu} imes U(1)_{L_\mu-L_ au}
ight]$ unflavored dark

Neutrino Hierarchies Texture Zeros

Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata leptonic mixing matrix

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{12}e^{i\alpha} & s_{13}e^{i(\beta-\delta_{CP})} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta_{CP}} & (c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta_{CP}})e^{i\alpha} & s_{23}c_{13}e^{i\beta} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta_{CP}} & -(s_{23}c_{12} + c_{23}s_{13}s_{12}e^{i\delta_{CP}})e^{i\alpha} & c_{23}c_{13}e^{i\beta} \end{pmatrix}$$

with [Gonzalez-Garcia et al, arXiv:1409.5439]

Ordering (normal or inverted), absolute scale, phases? Why these values? Symmetries!?

Neutrino Hierarchies Texture Zeros

Neutrino Hierarchies

Majorana mass matrix $\mathcal{M}_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^{T}$ in special cases:

(1) Normal hierarchy $(m_1 \simeq 0)$ and best-fit values (phases zero):

$$\mathcal{M}_{\nu} \simeq \begin{pmatrix} 0.37 & 0.75 & 0.24 \\ \cdot & 2.47 & 2.11 \\ \cdot & \cdot & 2.99 \end{pmatrix} \mathbf{10^{-2} \, eV} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \leftarrow \underline{\textbf{\textit{L}}}_{e}$$

2 Inverted hierarchy ($m_3 \simeq 0$) and $\alpha = \pi/2$:

$$\mathcal{M}_{\nu} \simeq \begin{pmatrix} 1.84 & -3.11 & 3.22 \\ \cdot & -0.14 & 0.88 \\ \cdot & \cdot & -1.77 \end{pmatrix} \mathbf{10}^{-2} \, \mathrm{eV} \sim \begin{pmatrix} 0 & \times & \times \\ \times & 0 & 0 \\ \times & 0 & 0 \end{pmatrix} \leftarrow \mathbf{L}_{e} - \mathbf{L}_{\mu} - \mathbf{L}_{\tau}$$

Solution Quasi-degenerate ($m_{1,2,3} \simeq 1 \, {\rm eV}$) and $\beta = \pi/2$:

$$\mathcal{M}_{\nu} \simeq egin{pmatrix} 0.96 & -0.20 & -0.22 \ \cdot & 0.11 & -0.97 \ \cdot & \cdot & -0.07 \end{pmatrix} \mathrm{eV} \sim egin{pmatrix} imes & 0 & 0 \ 0 & 0 & imes \ 0 & imes & 0 \end{pmatrix} \leftarrow egin{pmatrix} L_{\mu} - L_{ au} \end{pmatrix}$$

Now what?

• Three interesting zeroth order approximations:

$$\mathcal{M}_{\nu}^{L_{e}} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \quad \mathcal{M}_{\nu}^{L_{e}-L_{\mu}-L_{\tau}} \sim \begin{pmatrix} 0 & \times & \times \\ \times & 0 & 0 \\ \times & 0 & 0 \end{pmatrix}, \quad \mathcal{M}_{\nu}^{L_{\mu}-L_{\tau}} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

[G. Branco, W. Grimus, L. Lavoura, NPB (1989); S. Choubey, W. Rodejohann, EPJC 40 (2005)]

- Impose $U(1)_X$ to get \mathcal{M}^X_{ν} , then slightly break it. \Rightarrow Goldstone boson...
- Here: promote to local symmetry. Goldstone \rightarrow massive Z'.
- Remember: SM $+3\nu_R$ has anomaly free $U(1)_{B-L} \times U(1)_{L_e-L_{\mu}} \times U(1)_{L_{\mu}-L_{\tau}}$.

Simply take $U(1)_{B-3L_e}$, $U(1)_{B+3(L_e-L_{\mu}-L_{\tau})}$, or $U(1)_{L_{\mu}-L_{\tau}}$?

Neutrino Hierarchies Texture Zeros

Wrong end of the seesaw

• Imposing $U(1)_{B-3L_e}$ gives L_e symmetric \mathcal{M}_R , but not L_e symmetric

$$\mathcal{M}_{\nu}\simeq -m_D^T\mathcal{M}_R^{-1}m_D\,,$$

because $\mathcal{M}_{R}^{L_{e}}$ not invertible!

• Weird coincidence:

$$\mathcal{M}_{R}^{L_{e}-L_{\mu}-L_{\tau}} \sim \begin{pmatrix} \varepsilon & 1 & 1 \\ \cdot & \varepsilon & \varepsilon \\ \cdot & \cdot & \varepsilon \end{pmatrix} \quad \Rightarrow \quad \mathcal{M}_{\nu} \sim \mathcal{M}_{R}^{-1} \sim \begin{pmatrix} \varepsilon^{2} & \varepsilon & \varepsilon \\ \cdot & 1 & 1 \\ \cdot & \cdot & 1 \end{pmatrix}$$

 $L_e - L_\mu - L_\tau$ gives approximate L_e symmetry after seesaw!

Broken $U(1)_{B+3(L_e-L_{\mu}-L_{\tau})}$ (say $\varepsilon = 0.05$) gives normal hierarchy.¹⁴

• (Inverted hierarchy requires additional \mathbb{Z}_2 symmetry.)

¹⁴J.H. and W. Rodejohann, PRD **85**, 113017 (2012) [arXiv:1203.3117].

Neutrino Hierarchies Texture Zeros

Mixing Angles and Collider

• $U(1)_{B+3(L_e-L_\mu-L_ au)}$ broken by scalar $S\sim 6$ in RHN sector:

$$S^* \ \overline{\nu}_{R,1}^c \nu_{R,1} \,, \quad S \ \overline{\nu}_{R,2}^c \nu_{R,2} \,, \quad S \ \overline{\nu}_{R,2}^c \nu_{R,3} \,, \quad S \ \overline{\nu}_{R,3}^c \nu_{R,3} \quad \Rightarrow \quad \Delta \mathcal{M}_R \sim \langle S \rangle \,.$$

• VEV $v_S \sim \varepsilon |\mathcal{M}_R|$ gives:

- μ and τ same U(1)' charge: θ_{23} random (large...).
- LEP-II constraint on U(1)_{B+3(L_e-L_μ-L_τ)}: v_S > 2.3 TeV, LHC prospects in [H. S. Lee and E. Ma, PLB 688 (2010)].

 $L_{\mu} - L_{\tau}$

- Anomaly free in SM even without ν_R .¹⁵.
- $\mathcal{M}^{L_{\mu}-L_{\tau}}$ invertible \Rightarrow Seesaw gives $L_{\mu}-L_{\tau}$ symmetric \mathcal{M}_{ν} .
- Add one or two scalars S that couple to $\overline{\nu}_{R,j}^c \nu_{R,j}$ and get a VEV.
- VEV fills zeros in \mathcal{M}_R and \mathcal{M}_ν and gives mass to Z' boson $M_{Z'}/g' \sim \langle S \rangle$.
- No Z' coupling to first generation \rightarrow "Weak" limits for heavy Z':

$$M_{Z'}/g' > 550 \,{
m GeV}$$
 at 95% C.L.

from trident production at CCFR $\nu_{\mu}N \rightarrow \nu_{\mu}N \mu^{+}\mu^{-}$.¹⁶

 \bullet Light Z' (below 400 ${\rm MeV})$ can resolve muon's magnetic moment anomaly. 17

¹⁵Foot (1991), He, Joshi, Lew, Volkas (1991).

 ¹⁶Altmannshofer Gori, Pospelov, Yavin, PRD 89 (2014) [arXiv:1403.1269].
 ¹⁷Altmannshofer Gori, Pospelov, Yavin, PRL 113 (2014) [arXiv:1406.2332].

Neutrino Hierarchies Texture Zeros

 $L_{\mu} - L_{\tau}$

Two scalars, $\varepsilon = v_S / |\mathcal{M}_R| = 0.02$:

$L_{\mu} - L_{\tau}$ and Lepton Flavor Violation

- LFV in charged leptons if we break $L_{\mu} L_{\tau}$ with a scalar doublet.¹⁸
- Can source $h \to \mu \tau$.¹⁹

SM-like doublet Φ_2 , new doublet Φ_1 with $L_{\mu} - L_{\tau}$ charge -2, and singlet S with +1:

$$\begin{split} V(\Phi_1, \Phi_2, S) &= m_1^2 |\Phi_1|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 - m_2^2 |\Phi_2|^2 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &- \mu_S^2 |S|^2 + \frac{\lambda_S}{2} |S|^4 + \lambda_{\Phi_1 S} |\Phi_1|^2 |S|^2 + \lambda_{\Phi_2 S} |\Phi_2|^2 |S|^2 \\ &- \delta \ S^2 \Phi_2^{\dagger} \Phi_1 + \text{h.c.} \end{split}$$

S heavy and large VEV: 2HDM with softly broken U(1):

$$\begin{split} V(\Phi_1,\Phi_2) &\simeq m_1^2 |\Phi_1|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 - m_2^2 |\Phi_2|^2 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &- m_3^2 \Phi_2^{\dagger} \Phi_1 + \text{h.c.} \end{split}$$

Small VEV for Φ_1 : $\langle \Phi_1 \rangle \simeq \langle \Phi_2 \rangle m_3^2 / m_1^2 \simeq \delta \langle \Phi_2 \rangle \langle S \rangle^2 / m_1^2$.

¹⁸J.H., Rodejohann, PRD 84 (2011) [arXiv:1107.5238].

¹⁹J.H., Holthausen, Rodejohann, Shimizu, arXiv:1411.XXXX.

Neutrino Hierarchies Texture Zeros

Yukawa Structure

$$\begin{aligned} -\mathcal{L}_{Y} &= \overline{L}_{L} Y_{\ell_{1}} \Phi_{1} \ell_{R} + \overline{L}_{L} Y_{N_{1}} \widetilde{\Phi}_{1} N_{R} \\ &+ \overline{L}_{L} Y_{\ell_{2}} \Phi_{2} \ell_{R} + \overline{L}_{L} Y_{N_{2}} \widetilde{\Phi}_{2} N_{R} + \overline{Q}_{L} Y_{u} \widetilde{\Phi}_{2} u_{R} + \overline{Q}_{L} Y_{d} \Phi_{2} d_{R} \\ &+ \frac{1}{2} \overline{N}_{R}^{c} \mathcal{M}_{N} N_{R} + \frac{1}{2} \overline{N}_{R}^{c} Y_{S_{1}} S N_{R} + \frac{1}{2} \overline{N}_{R}^{c} Y_{S_{2}} \overline{S} N_{R} + \text{h.c.} \end{aligned}$$

with matrices

$$\begin{array}{ll} Y_{\ell_2} = {\rm diag}(y_e, y_\mu, y_\tau) \,, & Y_{N_2} = {\rm diag}(y_1, y_2, y_3) \,, \\ Y_{\ell_1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \xi_{\tau\mu} & 0 \end{pmatrix} \,, & Y_{N_1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \xi_{23} \\ 0 & 0 & 0 \end{pmatrix} \,. \end{array}$$

$$\mathcal{M}_N = \begin{pmatrix} M_1 & & \\ & & M_2 \\ & M_2 & \end{pmatrix}, Y_{\mathcal{S}_1} = \begin{pmatrix} 0 & 0 & a_{13} \\ 0 & 0 & 0 \\ a_{13} & 0 & 0 \end{pmatrix}, \quad Y_{\mathcal{S}_2} = \begin{pmatrix} 0 & a_{12} & 0 \\ a_{12} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

•

Neutrino Hierarchies Texture Zeros

Charged Lepton Masses

$$M_e = rac{v}{\sqrt{2}} egin{pmatrix} y_e s_eta & \ & y_\mu s_eta & \ & \xi_{ au\mu} c_eta & y_ au s_eta \end{pmatrix} \equiv V_{e_L} ext{diag}(m_e, m_\mu, m_ au) V_{e_R}^\dagger \,,$$

with

$$\frac{\tan \theta_L}{\tan \theta_R} = \frac{m_\mu}{m_\tau} \ll 1 \quad \text{and} \quad \sin \theta_R \simeq \frac{\nu}{m_\tau} \frac{\xi_{\tau\mu}}{\sqrt{2}} \cos \beta \,.$$

SM-like scalar h couples

$$y \simeq \underbrace{\text{diag}(m_e, m_\mu, m_\tau) \frac{c_\alpha}{v s_\beta}}_{\text{type-I 2HDM}} - s_R \frac{m_\tau}{v} \frac{\cos(\alpha - \beta)}{c_\beta s_\beta} \begin{pmatrix} 0 & & \\ & -c_R s_L & -s_L s_R \\ & c_L c_R & c_L s_R \end{pmatrix}.$$

Only LFV in μ - τ sector, quarks and electrons save!

Neutrino Hierarchies Texture Zeros

 $h
ightarrow \mu au$

CMS 2.5 σ excess in $h \rightarrow \mu \tau$ for²⁰

$$|y^h_{ au\mu}| = rac{m_ au}{v}|rac{\cos(lpha-eta)}{c_eta s_eta}c_Rc_Ls_R| \simeq 7 imes 10^{-3} \; |rac{\cos(lpha-eta)}{s_eta c_eta}c_Rs_R| \stackrel{!}{\simeq} 3 imes 10^{-3} \; .$$

- Either $c_{eta}, s_R \ll 1$ and $\xi_{\tau\mu} c_{\alpha-eta} \simeq 4 imes 10^{-3}$,
- or larger s_R and correlations with $h \rightarrow \tau \tau$, $\mu \mu$:

$$rac{\mathsf{BR}(h o au au)}{\mathsf{BR}(h o au au)|_{\mathrm{SM}}}\simeq \left(rac{c_lpha}{s_eta}-y^h_{ au\mu}rac{v}{m_ au}t_R
ight)^2\simeq \left(1\pm0.4\;|t_R|
ight)^2,$$

compared to 0.78 \pm 0.27 (CMS) or 1.4 $^{+0.5}_{-0.4}$ (ATLAS).

²⁰J.H., Holthausen, Rodejohann, Shimizu, arXiv:1411.XXXX.

Neutrino Hierarchies Texture Zeros

One step further: texture zeros

J

- $U(1)_{B-L} \times U(1)_{L_e-L_{\mu}} \times U(1)_{L_{\mu}-L_{\tau}}$ subgroups forbid entries in \mathcal{M}_R \Rightarrow texture zeros!²¹
- Choose subgroup so that some entries are allowed, others filled by $\langle S \rangle$, e.g. $B L_e + L_\mu 3L_\tau$ with Y'(S) = 2:

$$egin{aligned} \mathcal{M}_R &= M_0 egin{pmatrix} 0 & imes & 0 \ \cdot & 0 & 0 \ \cdot & \cdot & 0 \end{pmatrix} + \langle S
angle egin{pmatrix} imes & 0 & imes \ \cdot & imes & 0 \end{pmatrix} \ & \sim egin{pmatrix} imes & imes & imes \ \cdot & imes & 0 \end{pmatrix} & \sim egin{pmatrix} 0 & 0 & imes \ \cdot & imes & imes \end{pmatrix} \ & \sim egin{pmatrix} imes & imes \ \cdot & imes & 0 \ \cdot & imes & imes \end{pmatrix} & \sim egin{pmatrix} 0 & 0 & imes \ \cdot & imes & imes \end{pmatrix} \ & \sim egin{pmatrix} imes & 0 & 0 & imes \ \cdot & imes & imes \end{pmatrix} \ & \sim egin{pmatrix} imes & imes \ \cdot & imes & imes \end{pmatrix} & \sim egin{pmatrix} imes & 0 & 0 & imes \ \cdot & imes & imes \end{pmatrix} \ & \simeq \mathcal{M}_{
u}^{-1} \end{array}$$

- Dirac matrices diagonal by symmetry, so $\mathcal{M}_R \sim \mathcal{M}_{\nu}^{-1}$.
- Texture zeros imply testable correlations among neutrino parameters, *seven* out of 15 two-zero patterns currently viable.

²¹J.H., Araki, Kubo, JHEP **1207** (2012) [arXiv:1203.4951].

Neutrino Hierarchies Texture Zeros

Simplest U(1)' models with just one scalar

• With just one scalar S, we can get five of the seven valid patterns:²²

Symmetry generator Y'	Y'(S)	Texture zeros in \mathcal{M}_R	Texture zeros in $\mathcal{M}_{ u}$
$L_{\mu} - L_{ au}$	1	$(\mathcal{M}_R)_{33}, (\mathcal{M}_R)_{22} (\mathbf{C}^R)$	_
$B-L_e+L_\mu-3L_ au$	2	$(\mathcal{M}_R)_{33}, (\mathcal{M}_R)_{13} ({m B}_4^R)$	$(\mathcal{M}_{ u})_{12},(\mathcal{M}_{ u})_{22}\;(\pmb{B}_{3}^{ u})$
$B-L_e-3L_\mu+L_ au$	2	$(\mathcal{M}_R)_{22},(\mathcal{M}_R)_{12}\;(\boldsymbol{B}_3^R)$	$(\mathcal{M}_{ u})_{13},(\mathcal{M}_{ u})_{33}\;(m{B}_{4}^{ u})$
$B+L_e-L_\mu-3L_ au$	2	$(\mathcal{M}_R)_{33},(\mathcal{M}_R)_{23}\;(\boldsymbol{D}_2^R)$	$(\mathcal{M}_{ u})_{12}$, $(\mathcal{M}_{ u})_{11}$ $(oldsymbol{A}_{1}^{ u})$
$B+L_e-3L_\mu-L_ au$	2	$(\mathcal{M}_R)_{22}$, $(\mathcal{M}_R)_{23}$ (\boldsymbol{D}_1^R)	$(\mathcal{M}_{ u})_{13}$, $(\mathcal{M}_{ u})_{11}$ $(oldsymbol{A}_{2}^{ u})$

- Many patterns are hard to distinguish via neutrino experiments, e.g. D_1^R and D_2^R , but the symmetries $B + L_e - 3L_\mu - L_\tau$ and $B + L_e - L_\mu - 3L_\tau$ are very different
- \Rightarrow new possibilities to disentangle texture zeros.
- More scalars or discrete \mathbb{Z}_N subgroups can generate other allowed patterns.

²²J.H., Araki, Kubo, JHEP **1207** (2012) [arXiv:1203.4951].

Flavored Summary

- SM+3 ν_R has anomaly free local $U(1)_{B-L} imes U(1)_{L_e-L_\mu} imes U(1)_{L_\mu-L_\tau}$.
- Can use subgroups to influence
 - Neutrino hierarchies:
 - $U(1)_{B+3(L_e-L_{\mu}-L_{\tau})}$ for normal hierarchy,
 - $(U(1)_{B+3(L_e-L_{\mu}-L_{\tau})} \times \mathbb{Z}_2$ for inverted hierarchy,)
 - $U(1)_{L_{\mu}-L_{\tau}}$ for quasi-degenerate.
 - Texture zeros in \mathcal{M}_{ν} or \mathcal{M}_{ν}^{-1} .
 - Specific LFV modes, e.g. $h \rightarrow \mu \tau$ via $L_{\mu} L_{\tau}$.
 - (Z' pheno on top: muon's magnetic moment, leptophilic DM,...)

Very simple models, surprisingly potent framework!

Sterile Neutrinos Dark Matter

Dark Symmetries and Light Sterile Neutrinos

Neutrinos and *dark* gauge symmetries

If we ever observe a sterile neutrino, it's lighter than "expected" (10 $^9\,{\rm GeV}).$ Why?

How to make ν_s light?

Isn't new physics always at TeV?

• Use seesaw partners ν_R as steriles: eV-seesaw

$$\mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

with $m_D \sim 0.1\,{
m eV}$, $M_R \sim 1\,{
m eV}$. [de Gouvêa, PRD (2005)]

- Active-sterile mixing automatically large: $U_{as} \sim m_D/M_R \sim \sqrt{m_\nu/m_s} \sim 0.1.$
- Minimal 3 + 2 scheme: two ν_R at eV scale, works fine. [Donini, Schwetz et al., JHEP (2012)]
- Just throw in random O(1) couplings: sterile neutrino anarchy.
 [JH, Rodejohann, PRD (2013)]

 \Rightarrow The "heavy" eV-scale suppresses the "light" 0.1 eV?

Sterile Neutrinos Dark Matter

How to make ν_s light? II

• Put ν_s on the other side of the seesaw:

• Suppressed BY seesaw: need additional right-handed singlet S and mass matrix for $(\nu_{\alpha}, \nu_{R,j}^{c}, S^{c})$

$$\mathcal{M}_{\mathrm{MES}} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & M_R & m_S \\ 0 & m_S^T & 0 \end{pmatrix}.$$

Minimal Extended Seesaw (MES) [Chun, Joshipura, Smirnov, *PLB* (1995), Babu, Seidl, *PRD*,*PLB* (2004), Barry, Rodejohann, Zhang, *JHEP* (2011), Zhang, *PLB* (2012)]

• Works also for 3 + 2, 3 + 3,..., just add more singlets.

Sterile Neutrinos Dark Matter

Minimal extended seesaw

$$\mathcal{M}_{\mathrm{MES}} = egin{pmatrix} 0^{3 imes 3} & m_D & 0 \ m_D^T & M_R^{3 imes 3} & m_S \ 0 & m_S^T & 0^{1 imes 1} \end{pmatrix}$$

Assume $M_R \gg m_D, m_S$, usual seesaw:

$$\mathcal{M}_{\nu}^{4\times4} \simeq - \begin{pmatrix} (m_D M_R^{-1} m_D^T)^{3\times3} & m_D M_R^{-1} m_S \\ m_S^T M_R^{-1} m_D^T & (m_S^T M_R^{-1} m_S)^{1\times1} \end{pmatrix}$$

- all masses suppressed by seesaw scale $M_R \sim 2 imes 10^{14}\,{
 m GeV}.$ \checkmark
- sterile mass $m_4 \sim 1$ eV for $m_5 \sim 5\text{--}10 m_D$.
- active-sterile mixing $U_{as} = \mathcal{O}(m_D/m_S)$ automatically right.
- \Rightarrow SBL sterile neutrinos. \checkmark

Great, but how to get MES structure?

Sterile Neutrinos Dark Matter

How to get MES

Need

 $\overline{L}\langle H
angle
u_R$, $m_S \overline{S^c}
u_R$, $M_R \overline{\nu_R^c}
u_R$ and forbid couplings

 $\overline{L}\langle H\rangle S$,

 $\overline{S^c}S$.

- Flavor symmetry $A_4 \otimes \mathbb{Z}_4$ (messy...). [Zhang, *PLB* (2012)]
- Abelian gauge symmetry U(1)': simple, but need additional fermions to cancel anomalies. [Babu, Seidl, PLB (2004)]
 - Cancel anomalies, make new fermions massive, and not disturb MES structure? With few scalars? **Yes!**

Sterile Neutrinos Dark Matter

Magic numbers

	$\nu_{R,1}$	$\nu_{R,2}$	$\nu_{R,3}$	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	<i>S</i> ₆	<i>S</i> ₇	ϕ
Y'	0	0	0	11	-5	-6	1	-12	2	9	11

Mass matrix has nice block structure:

$$\mathcal{M} = \begin{pmatrix} (\mathcal{M}_{\text{MES}})_{7 \times 7} & 0\\ 0 & (\mathcal{M}_{S})_{6 \times 6} \end{pmatrix}$$

with

$$\mathcal{M}_{\mathcal{S}} = egin{pmatrix} 0 & y_1 \langle \phi
angle & 0 & 0 & 0 & 0 \ y_1 \langle \phi
angle & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & y_2 \langle \phi
angle & 0 & 0 \ 0 & 0 & y_2 \langle \phi
angle & 0 & 0 \ 0 & 0 & 0 & 0 & y_3 \langle \phi
angle \ 0 & 0 & 0 & 0 & y_3 \langle \phi
angle \end{pmatrix}$$

 \Rightarrow S₁ gives MES, S_{2,3,4,5,6,7} decouple and form 3 Dirac fermions $\Psi_{1,2,3}!$

Sterile Neutrinos Dark Matter

More numbers

- Happy "accident": ϕ breaks U(1)' to \mathbb{Z}_{11} . \Rightarrow all three Ψ_j stable!
- Active-sterile mixing $V_{4j} \sim \mathcal{O}(m_D/m_S) \stackrel{!}{=} \mathcal{O}(0.1).$
- For $\mathcal{O}(1)$ Yukawas $\Rightarrow U(1)'$ breaking at $\langle \phi \rangle \sim 10 \langle H \rangle \sim \text{TeV}.$

 \Rightarrow masses for Z', Re(ϕ), $\Psi_{1,2,3}$ around 100 GeV–TeV.

 \Rightarrow Multicomponent stable dark matter.

Breakdown of neutral fermions:

$$\underbrace{\nu_{e}, \nu_{\mu}, \nu_{\tau}, S_{1}, \underbrace{\nu_{R,1}, \nu_{R,2}, \nu_{R,3}}_{(3+1)\,\mathrm{MES}}, \underbrace{\underbrace{S_{2}, S_{3}, \underbrace{\Psi_{2}}_{54}, \underbrace{\Psi_{3}}_{56}, \underbrace{S_{6}, S_{7}}_{\mathrm{DM}}}_{\mathrm{DM}}$$

Dark matter interactions

Lagrangian:

$$\sum_{j} \left[\mathrm{i}\overline{\Psi}_{j}\gamma^{\mu}\partial_{\mu}\Psi_{j} - M_{j}\left(1 + \frac{\mathrm{Re}(\phi)}{\langle \mathrm{Re}(\phi) \rangle}\right) \ \overline{\Psi}_{j}\Psi_{j} + \frac{g'}{2}Z'_{\mu}\overline{\Psi}_{j}\gamma^{\mu}\left(g_{j}^{V} + g_{j}^{\mathcal{A}}\gamma_{5}\right)\Psi_{j}\right]$$

with $g_1^V = 1$, $g_2^V = 13$, $g_3^V = -7$, $g_1^A = -11$, $g_2^A = -11$, $g_3^A = 11$.

Connection to the Standard Model just like all other $U(1)_{\rm DM}$ models:

- Scalar mixing (Higgs portal): $\mathcal{L} \supset \delta |\mathcal{H}|^2 |\phi|^2$ $\Rightarrow \Psi_j$ couple to Brout–Englert–Higgs boson.
- Vector mixing (kinetic-mixing portal): $\mathcal{L} \supset \sin \xi F_Y^{\mu\nu} F'_{\mu\nu}$ $\Rightarrow \Psi_i$ couple to Z boson.

New:

• Fermion mixing (neutrino portal):

$$\mathcal{L} \supset rac{11g'}{2} Z'_{\mu} \sum_{i,j=1}^{4} V_{4i}^* V_{4j} ~ \left(\overline{
u}_i \gamma^{\mu} \gamma_5 \nu_j + \overline{
u}_i \gamma^{\mu} \nu_j \right) \,.$$

Unflavored Symmetries Sterile Neutrinos Flavored Symmetries Dark Matter

Neutrino portal

Sterile Neutrinos Dark Matter

Relic density via neutrino portal

• Relic density via annihilation $\Psi\Psi \rightarrow Z' \rightarrow \nu_s \nu_s$ into sterile neutrinos.

- Direct detection is loop-suppressed: $\sim \Delta m_{41}^2/(100\,{\rm GeV})^2 \sim 10^{-22}$.
- Indirect detection: BR($\Psi\Psi \rightarrow \nu\nu$) $\simeq 100\%$ gives monochromatic neutrinos from Galactic halo. Too small for IceCube...
- Including Higgs portal and kinetic-mixing portal gives the usual measurable effects.

Dark Summary

- Additional right-handed neutrinos with exotic charges under a broken U(1)' can generate structure in neutral fermions.
- Here: generate seesaw-suppressed sterile neutrino.
- Magic numbers: necessary anomaly-cancelling fermions form multicomponent DM.
- Gauge interactions open new SM–DM portal through sterile neutrinos.
- \Rightarrow Huge unexplored playground!

Other charges: 3 + 2, 3 + 3, Majorana DM, unstable DM, ...

Conclusion

- Abelian gauge symmetries U(1)' versatile framework.
- Simple, minimalistic, renormalizable.
- SM-motivated symmetries

connected to neutrino properties:

- B L for Majorana vs. Dirac and leptogenesis.
- B L only possible unbroken symmetry acting on SM particles.
- $L_{\mu} L_{\tau}$, $B + 3(L_e L_{\mu} L_{\tau})$,... for hierarchies, mixing angles, texture zeros, LFV, $h \rightarrow \mu \tau$, muon's magnetic moment, *R*-parity,...
- Dark U(1)' for sterile neutrino pheno, dark matter stability and abundance,...

Conclusion

- Abelian gauge symmetries U(1)' versatile framework.
- Simple, minimalistic, renormalizable.
- SM-motivated symmetries

connected to neutrino properties:

• B - L for Majorana vs. Dirac and leptogenesis.

Julian Heeck

- B L only possible unbroken symmetry acting on SM particles.
- $L_{\mu} L_{\tau}$, $B + 3(L_e L_{\mu} L_{\tau})$,... for hierarchies, mixing angles, texture zeros, LFV, $h \rightarrow \mu \tau$, muon's magnetic moment, *R*-parity,...
- Dark U(1)' for sterile neutrino pheno, dark matter stability and abundance,...

Sterile Neutrinos Dark Matter

How to check for $\Delta L = 4$?

• Neutrinoless quadruple beta decay²³ $(A, Z) \rightarrow (A, Z + 4) + 4 e^{-}$ e.g. via $\mathcal{O}_{\Delta L=4} = (\overline{\nu}_{L}^{c} \nu_{L})^{2} / \Lambda^{2}$:

• Collider process $e^-e^- \rightarrow W^-W^-W^-W^-\ell^+\ell^+$.

• Rare meson decays etc.?

²³J.H. and W. Rodejohann, EPL 103, 32001 (2013) [arXiv:1306.0580].

Sterile Neutrinos Dark Matter

Candidate Nuclei for $0\nu4\beta$

	$Q_{0 u4eta}$	Other decays	NA/%
$^{96}_{40}\mathrm{Zr} \rightarrow {}^{96}_{44}\mathrm{Ru}$	0.629 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{19}$ y	2.8
$^{136}_{54}{\rm Xe} \to {}^{136}_{58}{\rm Ce}$	0.044 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{21}$ y	8.9
$^{150}_{60}\mathrm{Nd} \to {}^{150}_{64}\mathrm{Gd}$	2.079 MeV	$ au_{1/2}^{2 u2eta}\simeq 7 imes 10^{18}$ y	5.6

Sterile Neutrinos Dark Matter

Best Candidate: Neodymium ¹⁵⁰Nd

Decay channels:

- ${}_{60}^{150}\text{Nd} \rightarrow {}_{62}^{150}\text{Sm}$ via $2\nu 2\beta \ (\tau_{1/2}^{2\nu 2\beta} \simeq 7 \times 10^{18} \text{ y})$: the two electrons have a continuous energy spectrum and total energy $E_{e,1} + E_{e,2} < 3.371 \text{ MeV}$.
- ${}_{60}^{150}\mathrm{Nd} \to {}_{64}^{150}\mathrm{Gd}$ via $0\nu4\beta$. Four electrons with continuous energy spectrum and summed energy $Q_{0\nu4\beta} = 2.079 \,\mathrm{MeV}$ are emitted. In this special case, the daughter nucleus is α -unstable with half-life $\tau_{1/2}^{\alpha} ({}_{64}^{150}\mathrm{Gd} \to {}_{62}^{146}\mathrm{Sm}) \simeq 2 \times 10^6 \,\mathrm{y}.$

 $0\nu4\beta$ kinematically allowed, but expected rates unobservable.

Texture Zeros

- Take \mathcal{M}_{ν} and set two independent entries to zero \Rightarrow four constraints on the nine low-energy parameters (m_1, m_2, m_3) , $(\theta_{23}, \theta_{12}, \theta_{13})$ and (δ, α, β) (CP violating phases)
- 15 two-zero textures possible, only 7 allowed at 3σ : [H. Fritzsch et al, JHEP 1109 (2011)]

$$\boldsymbol{A}_{1}^{\nu}: \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{pmatrix}, \quad \boldsymbol{A}_{2}^{\nu}: \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix}, \quad \boldsymbol{B}_{1}^{\nu}: \begin{pmatrix} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{pmatrix}, \quad \boldsymbol{B}_{2}^{\nu}: \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix},$$
$$\boldsymbol{B}_{3}^{\nu}: \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}, \quad \boldsymbol{B}_{4}^{\nu}: \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}, \quad \boldsymbol{C}^{\nu}: \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}.$$

Sterile Neutrinos Dark Matter

Vanishing Minors

- Same idea, but with \mathcal{M}_{ν}^{-1} instead of \mathcal{M}_{ν} .
- Seven patterns for \mathcal{M}_{ν}^{-1} allowed:

$$\boldsymbol{D}_{1}^{R}: \begin{pmatrix} \times & \times & \times \\ \cdot & 0 & 0 \\ \cdot & \cdot & \times \end{pmatrix}, \quad \boldsymbol{D}_{2}^{R}: \begin{pmatrix} \times & \times & \times \\ \cdot & \times & 0 \\ \cdot & \cdot & 0 \end{pmatrix}, \quad \boldsymbol{B}_{3}^{R}: \begin{pmatrix} \times & 0 & \times \\ \cdot & 0 & \times \\ \cdot & \cdot & \times \end{pmatrix}, \quad \boldsymbol{B}_{4}^{R}: \begin{pmatrix} \times & \times & 0 \\ \cdot & \times & \times \\ \cdot & \cdot & 0 \end{pmatrix},$$
$$\boldsymbol{B}_{1}^{R}: \begin{pmatrix} \times & \times & 0 \\ \cdot & 0 & \times \\ \cdot & \cdot & \times \end{pmatrix}, \quad \boldsymbol{B}_{2}^{R}: \begin{pmatrix} \times & 0 & \times \\ \cdot & \times & \times \\ \cdot & \cdot & 0 \end{pmatrix}, \quad \boldsymbol{C}^{R}: \begin{pmatrix} \times & \times & \times \\ \cdot & 0 & \times \\ \cdot & \cdot & 0 \end{pmatrix}.$$

• Two-zero texture in \mathcal{M}_{ν}^{-1} corresponds to two vanishing minors in $\mathcal{M}_{\nu}.$ E.g.

$$\mathcal{M}^{-1} = \begin{pmatrix} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{pmatrix} \quad \Rightarrow \quad \left| \begin{array}{cc} \mathcal{M}_{11} & \mathcal{M}_{13} \\ \mathcal{M}_{31} & \mathcal{M}_{33} \end{array} \right| = 0 = \left| \begin{array}{cc} \mathcal{M}_{21} & \mathcal{M}_{22} \\ \mathcal{M}_{31} & \mathcal{M}_{32} \end{array} \right|$$