

Cosmological constraints, and LHC signatures of a Z' mediator between dark matter and the SU(3) sector

Lucien Heurtier

Bruxelles, November 2015

Based on :

- E. Dudas, L.H., Y. Mambrini and B. Zaldivar, "Extra U(1), effective operators, anomalies and dark matter", Arxiv : 1307.0005
- O. Ducu, L.H., J. Maurer, "LHC signatures of a Z' mediator between dark matter and the SU(3) sector" ArXiv : 1509.05615

Outline

- Why a U(1)' symmetry?
- Introduction to an effective Z' model
- State of the art in the electroweak sector
- What about colour?
- Dark matter constraints
- LHC constraints
- New possible signatures at LHC?

◊ Common wisdom : The standard model is uncomplete..

- ◊ Common wisdom : The standard model is uncomplete..
- Dark matter is unexplained

- ◊ Common wisdom : The standard model is uncomplete..
- Dark matter is unexplained
- ◊ Theoretical puzzles (Hierarchy problem, strong CP problem ...)

- ◊ Common wisdom : The standard model is uncomplete..
- Dark matter is unexplained
- ◊ Theoretical puzzles (Hierarchy problem, strong CP problem ...)
- ◊ Heavy theoretical weapons (String theory, SUSY, GUT theories...)

- o Common wisdom : The standard model is uncomplete...
- Dark matter is unexplained
- ◊ Theoretical puzzles (Hierarchy problem, strong CP problem ...)
- ◊ Heavy theoretical weapons (String theory, SUSY, GUT theories...)
- \diamond Technical problems (Several Higgs, where are the superpartners?, how do we deal with $\mathcal{O}(100)$ parameters...)

- o Common wisdom : The standard model is uncomplete...
- Dark matter is unexplained
- ◊ Theoretical puzzles (Hierarchy problem, strong CP problem ...)
- Heavy theoretical weapons (String theory, SUSY, GUT theories...)
- \diamond Technical problems (Several Higgs, where are the superpartners?, how do we deal with $\mathcal{O}(100)$ parameters...)
- ◊ Again, theoretical puzzles (Naturalness, Universality,..)

- o Common wisdom : The standard model is uncomplete...
- Dark matter is unexplained
- ◊ Theoretical puzzles (Hierarchy problem, strong CP problem ...)
- Heavy theoretical weapons (String theory, SUSY, GUT theories...)
- \diamond Technical problems (Several Higgs, where are the superpartners?, how do we deal with $\mathcal{O}(100)$ parameters...)
- ◊ Again, theoretical puzzles (Naturalness, Universality,..)

Need to parametize our lack of knowledge!

Why a U(1)' Symmetry?

Possible approach :

• Add a minimal amount of physical states

Possible approach :

- Add a minimal amount of physical states
- Motivate additional effective operators

Possible approach :

- Add a minimal amount of physical states
- Motivate additional effective operators
- Try to understand a smart toy-model!

Simplest extension of SM ightarrow add a U(1)' symmetry

Question : Who is charged under what?

L. Heurtier

Simplest extension of SM ightarrow add a U(1)' symmetry

Question : Who is charged under what?

Two options :

Simplest extension of SM ightarrow add a $\mathit{U}(1)'$ symmetry

Question : Who is charged under what?

Two options :

- Charged SM fermions
 - \longrightarrow FCNC constraints
 - $\longrightarrow B L$, $\alpha(B L) + \beta Y$ models heavy Z'
 - \longrightarrow Stringy light Z', anomaly cancellation a la Green-Schwarz

Simplest extension of SM ightarrow add a $\mathit{U}(1)'$ symmetry

Question : Who is charged under what?

Two options :

- Charged SM fermions
 - \longrightarrow FCNC constraints

 $\longrightarrow B - L$, $\alpha(B - L) + \beta Y$ models heavy Z'

 \longrightarrow Stringy light Z', anomaly cancellation a la Green-Schwarz

• Uncharged SM fermions

- \longrightarrow Motivations from string theory (D-brane models)
- \longrightarrow Heavy States \rightsquigarrow effective higher-dimensional operators

 \diamond New gauge boson Z'

- ◇ New gauge boson Z'
- ◊ Heavy States : heavy SM-like fermions

- \diamond New gauge boson Z'
- ◊ Heavy States : heavy SM-like fermions
- Assume the model is anomaly-free and conserves CP

- ◇ New gauge boson Z'
- Heavy States : heavy SM-like fermions
- Assume the model is anomaly-free and conserves CP
- \diamond Dark matter : ψ_{DM} chiral fermion

- ◇ New gauge boson Z'
- Heavy States : heavy SM-like fermions
- Assume the model is anomaly-free and conserves CP
- \diamond Dark matter : ψ_{DM} chiral fermion

The little story of a little rayline

$$E_{\gamma} = m_{DM} \left(1 - \frac{m_Z^2}{4m_{DM}^2} \right) \tag{1.1}$$

Bruxelles, November 2015

L. Heurtier

The little story of a little light ray

[Dudas et al., 2012]

The little story of a little light ray

Weniger, 2012

End of the story?...

- \hookrightarrow detected in other regions of the sky
- \hookrightarrow detector effects suspected...

◊ Look at other possible interactions : What about SU(3) channels?

Reminder Box

Introduction : The model

♦ Heavy intermediate states : heavy SM fermions

Heavy mass scale : breaking of the heavy U(1)' higgs sector

Stueckelberg realization

$$\Phi = rac{V + \phi}{\sqrt{2}} exp(ia_X/V) \longrightarrow \Phi = rac{V}{\sqrt{2}} exp(ia_X/V)$$

U(1)' transformations

$$\delta Z'_{\mu} = \partial_{\mu} \alpha$$
 , $\delta \theta_X = rac{g_X}{2} \alpha$ where $\theta_X \equiv rac{a_X}{V}$

Initial lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} a_{X} - M_{Z'} Z'_{\mu})^{2} - \frac{1}{4} F^{X}_{\mu\nu} F^{X \, \mu\nu} \\ &+ \bar{\Psi}^{i}_{L} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X^{i}_{L} \gamma^{\mu} Z'_{\mu} \right) \Psi^{i}_{L} \\ &+ \bar{\Psi}^{i}_{R} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X^{i}_{R} \gamma^{\mu} Z'_{\mu} \right) \Psi^{i}_{R} \\ &- \left(\bar{\Psi}^{i}_{L} M_{ij} e^{\frac{i a_{X} (X^{i}_{L} - X^{j}_{R})}{V}} \Psi^{i}_{R} + \text{h.c.} \right) \\ \end{split}$$
where
$$\begin{split} M_{Z'} \equiv g_{X} \frac{V}{2} \, . \end{split}$$

 \hookrightarrow Invariant under U(1)' transformations

Initial lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} a_{X} - M_{Z'} Z_{\mu}')^{2} - \frac{1}{4} F_{\mu\nu}^{X} F^{X \, \mu\nu} \\ &+ \bar{\Psi}_{L}^{i} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X_{L}^{i} \gamma^{\mu} Z_{\mu}' \right) \Psi_{L}^{i} \\ &+ \bar{\Psi}_{R}^{i} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X_{R}^{i} \gamma^{\mu} Z_{\mu}' \right) \Psi_{R}^{i} \\ &- \left(\bar{\Psi}_{L}^{i} M_{ij} e^{\frac{i a_{X} (X_{L}^{i} - X_{R}^{j})}{V}} \Psi_{R}^{i} + \text{h.c.} \right) \\ \text{where} \qquad M_{Z'} \equiv g_{X} \frac{V}{2} \, . \end{split}$$

 \hookrightarrow Invariant under U(1)' transformations

 $\hookrightarrow \mathcal{L}$ anomaly-free & \mathcal{L}_{SM} neutral under $U(1)' \Rightarrow \Psi_M$ set anomaly-free

Initial lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} a_{X} - M_{Z'} Z'_{\mu})^{2} - \frac{1}{4} F^{X}_{\mu\nu} F^{X \, \mu\nu} \\ &+ \bar{\Psi}^{i}_{L} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X^{i}_{L} \gamma^{\mu} Z'_{\mu} \right) \Psi^{i}_{L} \\ &+ \bar{\Psi}^{i}_{R} \left(i \gamma^{\mu} D_{\mu} + \frac{g_{X}}{2} X^{i}_{R} \gamma^{\mu} Z'_{\mu} \right) \Psi^{i}_{R} \\ &- \left(\bar{\Psi}^{i}_{L} M_{ij} e^{\frac{i a_{X} (x^{i}_{L} - x^{j}_{R})}{V}} \Psi^{i}_{R} + \text{h.c.} \right) \\ \text{where} \qquad M_{Z'} \equiv g_{X} \frac{V}{2} \, . \end{split}$$

 \hookrightarrow Invariant under U(1)' transformations

 $\hookrightarrow \mathcal{L} \text{ anomaly-free } \& \ \mathcal{L}_{SM} \text{ neutral under } U(1)' \Rightarrow \Psi_M \text{ set} \\ \text{anomaly-free}$

 $\hookrightarrow \text{ Kinetic mixing term } \tfrac{\delta}{2} \ F_X^{\mu\nu} \ F_{\mu\nu}^Y \text{ is neglected } \underbrace{\mathbb{W}_{hy}}_{\leftarrow}$

Effective couplings

-

Effective couplings

$$\mathcal{L}_{CP \text{ even}}^{(6)} = \frac{1}{M^2} \left\{ d_g \partial^\mu D_\mu \theta_X \mathcal{T}r(G\tilde{G}) + d'_g \partial^\mu D^\nu \theta_X \operatorname{Tr}(G_{\mu\rho} \tilde{G}^\rho_{\nu}) \right. \\ \left. + \left. e_g D^\mu \theta_X \operatorname{Tr}(G_{\nu\rho} \mathcal{D}_\mu \tilde{G}^{\rho\nu}) + e'_g D_\mu \theta_X \operatorname{Tr}(G_{\alpha\nu} \mathcal{D}^\nu \tilde{G}^{\mu\alpha}) \right\} \\ \left. + \left. \frac{1}{M^2} \left\{ D^\mu \theta_X \left[i(D^\nu H)^\dagger (c_1 \tilde{F}^\gamma_{\mu\nu} + 2c_2 \tilde{F}^W_{\mu\nu}) H + h.c. \right] \right. \\ \left. + \left. \partial^m D_m \theta_X (d_1 \mathcal{T} r(F^\gamma \tilde{F}^\gamma) + 2d_2 \mathcal{T} r(F^W \tilde{F}^W)) \right. \\ \left. + \left. d'_{ew} \partial^\mu D^\nu \theta_X \operatorname{Tr}(F_{\mu\rho} \tilde{F}^\rho_{\nu}) \right. \\ \left. + \left. e_{ew} D^\mu \theta_X \operatorname{Tr}(F_{\nu\rho} \mathcal{D}_\mu \tilde{F}^{\rho\nu}) + e'_{ew} D_\mu \theta_X \operatorname{Tr}(F_{\alpha\nu} \mathcal{D}^\nu \tilde{F}^{\mu\alpha}) \right\} \right\} (1.2)$$

-

couplings

$$\mathcal{L}_{CP \text{ even}} = \frac{1}{M^2} \left\{ d_g \partial^\mu D_\mu \theta_X \mathcal{T}r(G\tilde{G}) + \frac{d'_g \partial^\mu D^\nu \theta_X \operatorname{Tr}(G_{\mu\rho}\tilde{G}^{\rho}_{\nu})}{e_g D^\mu \theta_X \operatorname{Tr}(G_{\nu\rho} D_\mu \tilde{G}^{\rho\nu})} + e'_g D_\mu \theta_X \operatorname{Tr}(G_{\alpha\nu} D^\nu \tilde{G}^{\mu\alpha}) \right\}$$

$$\mathcal{L}_{DM} = \bar{\psi}_L^{DM} \frac{1}{2} g_X X_L^{DM} \gamma^\mu Z'_\mu \psi_L^{DM} + \bar{\psi}_R^{DM} \frac{1}{2} g_X X_R^{DM} \gamma^\mu Z'_\mu \psi_R^{DM}$$

< □ > < □ > < □ > < □ > < □ > < □ >
couplings

$$\mathcal{L}_{CP \text{ even}} = \frac{1}{M^2} \left\{ d_g \partial^\mu D_\mu \theta_X \mathcal{T}r(G\tilde{G}) + \frac{d'_g \partial^\mu D^\nu \theta_X \operatorname{Tr}(G_{\mu\rho}\tilde{G}^{\rho}_{\nu})}{e_g D^\mu \theta_X \operatorname{Tr}(G_{\nu\rho} D_\mu \tilde{G}^{\rho\nu})} + e'_g D_\mu \theta_X \operatorname{Tr}(G_{\alpha\nu} D^\nu \tilde{G}^{\mu\alpha}) \right\}$$

$$\mathcal{L}_{DM} = \bar{\psi}_L^{DM} \frac{1}{2} g_X X_L^{DM} \gamma^\mu Z'_\mu \psi_L^{DM} + \bar{\psi}_R^{DM} \frac{1}{2} g_X X_R^{DM} \gamma^\mu Z'_\mu \psi_R^{DM}$$

DM annihilation into Gluons

 \hookrightarrow Non-chiral dark matter : no contribution

DM annihilation into Gluons

 \hookrightarrow Non-chiral dark matter : no contribution

 \hookrightarrow Chiral dark matter :

$$\langle \sigma v \rangle_{s-ch.} \simeq \frac{d_g^2}{M^4} \frac{g_X^4 m_{\psi}^6 (X_L - X_R)^2}{\pi M_{Z'}^4} \left\{ \frac{2 \left(M_{Z'}^2 - 4 m_{\psi}^2 \right)^2}{\left(M_{Z'}^2 \Gamma^2 (Z') + \left(M_{Z'}^2 - 4 m_{\psi}^2 \right)^2 \right)} \right\}$$

$$\langle \sigma v
angle_{t-ch.} \simeq rac{g_X^4 \sqrt{m_\psi^2 - M_{Z'}^2}}{128 \pi^2 m_\psi M_{Z'}^2 \left(2m_\psi^2 - M_{Z'}^2
ight)^2} P_4\left(m_\psi^2, M_{Z'}^2, X_R^2, X_L^2
ight)$$

Introduction Gluons production Experimental constraints LHC signatures Conclusion

DM annihilation into Gluons

Main features :

 \hookrightarrow Landau-Yang suppression at $m_{\psi} = \frac{M_{Z'}}{2}$ (enhancement in the case of EW gauge bosons production)

DM annihilation into Gluons

Main features :

 \hookrightarrow Landau-Yang suppression at $m_{\psi} = \frac{M_{Z'}}{2}$ (enhancement in the case of EW gauge bosons production)

 \hookrightarrow T-channel opening at $m_\psi = M_{Z'}$

DM annihilation into Gluons

Main features :

 \hookrightarrow Landau-Yang suppression at $m_{\psi} = \frac{M_{Z'}}{2}$ (enhancement in the case of EW gauge bosons production)

 \hookrightarrow T-channel opening at $m_{\psi} = M_{Z'}$

 \hookrightarrow T-channel mostly sensible to g_X

A few parameters in this model : $M_{Z'}$, m_{ψ} , g_X , $\frac{d_g}{M^2}$, X_L , X_R .

 \hookrightarrow need to be constrained!

A few parameters in this model : $M_{Z'}$, m_{ψ} , g_X , $\frac{d_g}{M^2}$, X_L , X_R .

- \hookrightarrow need to be constrained!
- Experimental constraints :

A few parameters in this model : $M_{Z'}$, m_{ψ} , g_X , $\frac{d_g}{M^2}$, X_L , X_R .

- \hookrightarrow need to be constrained!
- Experimental constraints :
 - Relic abundance

A few parameters in this model : $M_{Z'}$, m_{ψ} , g_X , $\frac{d_g}{M^2}$, X_L , X_R .

 \hookrightarrow need to be constrained!

Experimental constraints :

- Relic abundance
- Indirect detection

A few parameters in this model : $M_{Z'}$, m_{ψ} , g_X , $\frac{d_g}{M^2}$, X_L , X_R .

 \hookrightarrow need to be constrained!

Experimental constraints :

- Relic abundance
- Indirect detection
- LHC mono-jets events

What about direct detection?

Direct detection?

• Integrating out Z' :

$$\frac{d_g}{M^2 M_{Z'}^2} \, \bar{\psi}^{DM} \gamma^{\mu} \left(\frac{X_R + X_L}{2} + \frac{X_R - X_L}{2} \gamma_5 \right) \psi^{DM} \mathcal{T}r \, \partial_{\mu} (G \tilde{G})$$

• Imposing CP invariance for strong interactions :

 $\langle N(p)|{
m Tr}\ G^{
u}_{\mu} \tilde{G}^{\lambda}_{
u}|N(p')
angle = A\epsilon^{\lambdalphaeta}_{\mu} p_{lpha} p'_{eta}$ where A invariant.

$$\Rightarrow \langle N(p) | \mathcal{T}r \; \partial_{\mu}(G \, \tilde{G}) | N(p') \rangle = 0$$

No constraint from direct detection.

Introduction Gluons production Experimental constraints LHC signatures Conclusion

Relic abundance and indirect detection

L. Heurtier

Relic abundance and indirect detection

Other curves

LHC constraints

Possible mono-jets final states

Figure : Dark matter production processes at the LHC (at partonic level), in association with 1 jet: $p \ p \rightarrow j \bar{\psi}_{DM} \psi_{DM}$.

LHC constraints

Using CMS data [[CMS Collaboration], CMS-PAS-EXO-12-048], $E_{CM} = 8$ TeV:

Figure : 90% CL lower bounds on the quantity M^2/d_g as a function of the dark matter mass, for $M_{Z'} = 100$ GeV (blue), 500 GeV (red) and 1 TeV (green). Based on the CMS analysis with collected data using a center-of-mass energy of 8 TeV and a luminosity of 19.5/fb.

Synthesis

э

イロト イポト イヨト イヨト

Synthesis

э

イロト イポト イヨト イヨト

Comparison with EW sector

L. Heurtier

-

Any signature? ...

Interesting channels : multi-tops production

- $Z' \rightarrow GG$ forbidden by Landau-Yang
- Need (e.g.) ISR to feel the resonance
- Off-shell contributions in the *tttt* channel

Interesting channels : multi-tops production

1/ Tri-jets invariant mass :

- ISR+ $Z'
 ightarrow q ar{q} \, G$ (Br \sim 100 %)
- Studies of resonances : mainly di-jets or pair production
- Yet, at 7TeV : $\frac{d\sigma}{d\Omega}(m_{jjj})$: [Khachatryan et al. (CMS) arXiv:1412.1633]
- \hookrightarrow Upper limit on $\frac{d_g}{M^2}$

Tri-jets invariant mass

- Reproduce CMS cuts : $p_T > 100 {
 m GeV}$, |y| < 3.0
- Dissociate $|y|_{max} < 1$ and $1 \leqslant |y|_{max} \leqslant 2$
- Using Madgraph, CTEQ6L1, Pythia to MC, pdf and hadronisation

Figure : Three-jet invariant mass spectrum for QCD (left) and Z' signal models of various masses (right).

Tri-jets invariant mass

- Light Z' : peak smeared \rightarrow ISR selected in the tri-jets ...
- + : Populates high energetic bins
- + : QCD background is lower there
- - : Interpretation of the signal rendered less trivial..
- Exclusion limits on Z' at 7 TeV ightarrow upper limits on d_g/M^2

tītī production

• A promising channel : $t\bar{t}t\bar{t}$

	SM	Z' 300 ${ m GeV}$	$500{ m GeV}$	$800{ m GeV}$	$1.6 \mathrm{TeV}$	$3{ m TeV}$
8TeV	~ 1.3 fb	2.8 pb	0.36 pb	55 fb	5.9 fb	0.28 fb
13TeV	9.2 fb	0.57 μ b	74 pb	11 pb	1.2 pb	57 fb

- Very small coupling in the SM
- Landau-Yang suppression → off-shell contributions
 → no dependance on the Z' width
- Interferences SM-Z' negligible (<5%)
- CMS bound : $\sigma(t\bar{t}t\bar{t}) < 32 {
 m fb}$ at 8TeV

[Khachatryan et al.[CMS Collaboration] arXiv:1409.7339]

Constraints of LHC, run 1

L. Heurtier

From exclusion limits to projections

- LHC run 2 : up to $100 fb^{-1}$ at 13 TeV
- Potential of discovery for this model?
- Tri jets : MC simulation of the background for pp → jjj up to m_{Z'} = 5TeV → Overestimation of the background compared to CMS at

high E : more conservative in our case

• Four-tops : at 13 TeV :

$$\sigma_{SM}(t\bar{t}t\bar{t}) \rightarrow imes 7$$

 $\sigma_{Z'}(t\bar{t}t\bar{t}) \rightarrow imes 200 !$

Results

• Model very much constrained from different perspectives

- Model very much constrained from different perspectives
- $m_\psi\gtrsim 100-500~{
 m GeV}$

- Model very much constrained from different perspectives
- $m_\psi\gtrsim 100-500$ GeV
- Need for more precise data about gluon-gluon final states (indirect detection)

- Model very much constrained from different perspectives
- $m_\psi\gtrsim 100-500$ GeV
- Need for more precise data about gluon-gluon final states (indirect detection)
- A way to investigate with more accuracy the presence of dark matter production in LHC data

- Model very much constrained from different perspectives
- $m_\psi\gtrsim 100-500$ GeV
- Need for more precise data about gluon-gluon final states (indirect detection)
- A way to investigate with more accuracy the presence of dark matter production in LHC data
- Microscopic computations of effective coupling to be extended to other interactions

- Model very much constrained from different perspectives
- $m_\psi\gtrsim 100-500$ GeV
- Need for more precise data about gluon-gluon final states (indirect detection)
- A way to investigate with more accuracy the presence of dark matter production in LHC data
- Microscopic computations of effective coupling to be extended to other interactions
- Possible predictions for the next runs of the LHC...

The End

Thank you!

Bruxelles, November 2015

L. Heurtier
Constraints on kinetic mixing

If not neglected \longrightarrow new diagrams

$$\langle \sigma v \rangle_{GG} \simeq \frac{d_g^2}{M^4} \frac{2g_X^4}{\pi} \frac{m_{\psi}^6}{M_{Z'}^4} \,.$$
 (5.1)

 \rightarrow [X. Chu, Y. Mambrini, J. Quevillon and B. Zaldivar, arXiv:1306.4677 [hep-ph]

$$\begin{split} \langle \sigma v \rangle_{\delta} &\simeq \frac{16}{\pi} g_X^2 g^2 \delta^2 \frac{m_{\psi}^2}{M_{Z'}^4} \qquad , \qquad m_{\psi} < M_Z \\ \langle \sigma v \rangle_{\delta} &\simeq \frac{g_X^2 g^2 \delta^2 M_Z^4}{\pi m_{\psi}^2 M_{Z'}^4} \qquad , \qquad m_{\psi} > M_Z. \end{split}$$

Bruxelles, November 2015

(5.2)

L. Heurtier

Constraints on kinetic mixing

Kinetic mixing competes with other effective operators if

$$\delta \gtrsim \frac{d_g}{M^2} \frac{g_X}{2\sqrt{2}g} m_{\psi}^2 \qquad , \qquad m_{\psi} < M_Z$$

$$\delta \gtrsim \frac{d_g}{M^2} \frac{\sqrt{2}g_X}{g} \frac{m_{\psi}^4}{M_Z^2} \qquad , \qquad m_{\psi} > M_Z \qquad (5.3)$$

 \hookrightarrow For $m_\psi=$ 200 GeV : $rac{d_g}{M^2}\lesssim 10^{-4} imes \delta$ GeV $^{-2}$

Constraints on kinetic mixing

 $\hookrightarrow \delta \gtrsim$ 0.8 excluded by LEP experiments...

L. Heurtier

Introduction Gluons production Experimental constraints LHC signatures Conclusion

Relic abundance and indirect detection

L. Heurtier

Bruxelles, November 2015

Introduction Gluons production Experimental constraints LHC signatures Conclusion

Relic abundance and indirect detection

L. Heurtier

Bruxelles, November 2015

Synthesis

э

Synthesis

< ∃ →

Image: A matrix and a matrix