

Bundesministerium für Bildung und Forschung

Search for new resonances with boosted signatures at CMS

Roman Kogler (University of Hamburg)

ULB Physique Théorique Seminar, Brussels October 30st 2015

Overview

- Introduction
- Reconstruction Methods
- Searches at Run I

Outlook for Run 2

Ш

붜

BSM Theories

- Why is the weak force so much stronger than gravity?
 - Fine tuning of the SM parameters if SM is valid up to the Planck mass
- Possible solutions
 - SUSY (not covered in this talk)
 - Extra Dimensions
 - Warped extra dimension models where fermions propagate in the bulk
 - Composite Higgs
 - Heavy Vector Triplet model with new W'[±], Z' states
- Contributions to S and T parameters should not be too large:
 - extra dimensions, $M_{Z'}$ > 2-3 TeV
 - Composite Higgs, $M_{W'} > 1-2 \text{ TeV}$

 \Rightarrow Look for heavy resonances!

Phenomenology Example

- Warped extra dimensions on the bulk, EWK KK modes
 - increased BR to W_LW_L , Z_LH , tt
 - suppressed decays to light quarks and lepton pairs
- Also: composite Higgs models with Z'→tt and W'→WZ,WH, tb and heavy quark partners B→tW, bH, bZ and T→bW, tH, tZ

Ш

笧

Boosted Physics Searches

e,µ

leptonic decay

e,µ

Reconstruction Techniques

PF and PU

PF benefits from all sub-detectors, use the one with best resolution

Detector	p _T -resolution (range)	η/Φ-segmentation
Tracker	0.6% (0.2 GeV) – 5% (500 GeV)	0.002 x 0.003 (first pixel layer)
ECAL	1% (20 GeV) – <mark>0.4%</mark> (500 GeV)	0.017 x 0.017 (barrel)
HCAL	30% (30 GeV) – <mark>5%</mark> (500 GeV)	0.087 x 0.087 (barrel)

[CMS PAS EXO-12-022, B2G-13-008, arXiv:1506.03062]

Non-isolated Leptons

[CMS JME-13-007, JHEP 12, 017 (2014)]

z = 0.1

 $D_{cut} = m_{jet}/p_{T,jet}$

V_{jet}

V Tagging

- Discriminate V jets based on substructure variables from q/g
 - Pruned jet mass [Ellis et al. PRD81, 094023(2010)]
 - remove soft/wide angle radiation
 - strongly reduce q/g jet mass

Roman Kogler

• N-subjetiness ratio $T_{21} = T_2/T_1$ [Thaler et al., JHEP 1103,015(2011)]

- small N indicates compatibility with N-prong decay

[CMS JME-13-007, JHEP 12, 017 (2014)]

b-jet

b-jet

Viet

V Tagging in Data

- Validation of substructure observables in W+jet, QCD multijet and tt production
- ME+PS simulations describe τ₂₁ within 10%
 - depends on shower and hadronisation model
- Efficiency described within 10% (absolute value depends on τ₂₁ cut)

ШΗ

H I

[EXO-14-009, arXiv:1506.01443, PAS BTV-13-001] H Tagging in $H \rightarrow bb$

- Pruned jet mass main discriminator
 - mass window [110,135] GeV exclusive to V taggers
- (Sub)jet b-tagging powerful tool for discrimination, use:
 - subjets if well separated ($\Delta R > 0.3$)
 - else, R=0.8 jet (at very high p_T)

Roman Kogler

H_{iet}

12

[EXO-14-009, arXiv:1506.01443]

H_{jet}

H Tagging in $H \rightarrow WW^* \rightarrow qqqq$

- ► H→WW*→4q has second highest BR after H→bb
- Various combinations of τ_i possible
 - τ₄₂ best discrimination against q/g/W/Z/H(bb) jets (1 or 2 prong)
- distribution of T₄₂ agrees in shape with simulation, but is shifted towards smaller values (similar, but opposite to T₂₁)

	BR(W/Z/H→XX)	Mistag
V(qq) tagger	70%/68%	1.2%
H(bb) tagger	57%	0.5%
H(WW→4q) tagger	10%	1.5%
H(тт) tagger	6%	0.03%

Comparison of V/H taggers at 35% efficiency

Background rejection of H(bb) better by factor of 2 w.r.t V(qq) and H(4q) taggers

[CMS PAS JME-13-007]

t Tagging: Performance in Data

- Performance study in tt events
 - reconstruct leptonic hemisphere using mass constraints and b-tagging
 - validate top-tagging on single jet on hadronic hemisphere

• good general agreement, efficiencies described within 10-20% (depends on definition of tagger, p_T and $|\eta|$)

VV Resonances

[EXO-12-024, JHEP08, 173 (2014)]

iet

$VV \rightarrow (q\bar{q}) (q\bar{q})$

Highest BR, highest background

Roman Kogler

- Trigger using H_T and M_{ij} , fully efficient for $M_{ij} > 900$ GeV
- V_{jet} selection

Ш

Ĥ

- pruned mass: 70 < m_{pruned} < 100 GeV
- high purity (HP): τ_{21} < 0.5, low purity: 0.5 < τ_{21} < 0.75

17

[EXO-12-024, JHEP08, 173 (2014)]

$VV \rightarrow (q\bar{q}) (q\bar{q})$

- four categories (HP, LP)
 - single V_{jet} , sensitive to $q^* \rightarrow qV$
 - double V_{jet} , sensitive to $X \rightarrow VV$
- parametrise background with smoothly falling function
 - rely on data only, not affected by mismodelling in simulation
 - sensitivity to bumps
 - no sensitivity to enhancements
- corrections for signal efficiency obtained in tt̄ control region

'iet

 $1 = 19.7 \text{ fb}^{-1} \text{ at } \sqrt{\text{s}} = 8 \text{ TeV}$

WV $\rightarrow \ell \vee (q\bar{q})$

- Trigger high p_T lepton: $p_T > 80$ (40) GeV for e (μ)
- Reconstruct one W from lepton and E^{miss}
- Second W reconstructed from V-tagged jet
- W+jets background estimated from lower jet mass side-band (α method)

$ZV \rightarrow \ell\ell (q\bar{q})$

- Follow similar strategy as in ℓ∨ channel
- Dilepton triggers (reach lower M_{VV})
- Remove other lepton from isolation cone
- Higher purity but less sensitivity due to smaller BR

20

Combination of VV Searches

Combination in bulk graviton model

- Highest sensitivity from ℓ∨+jet channel
- Sensitivity of Jet+Jet channel comparable at high mass
- Il+jet channel reaches lower mass
- Combination improves sensitivity by 15-20%

Combination of VV Searches

Combination in bulk graviton model

- No significant deviations from expected
- Sensitivity not high enough to exclude graviton in this model (with k/M_{Pl} = 0.5)

[ATLAS EXOT-2013-08, arXiv:1506.00962]

$\mathsf{ATLASVV} \to (q\bar{q}) (q\bar{q})$

ATLAS dijet search, similar to CMS one

- 3.4σ (local) at M = 2 TeV
 (2.5σ global)
- also analysed WW and ZZ channels, but highly correlated
- 84 citations since June (~15 per month)
 - rather exceptional for an experimental publication (except the H discovery)
 - many interpretations

 (left-right models,VLQs, SUSY, extra dimensions, 2HDM,...)

Ш

笧

Comparison CMS / ATLAS

Simple fit of observed events vs. expected

use data around M = 1.8 TeV (no correlations)

	WZ resonance analyses				
	Analysis	Expected	Observed	Excess	Fitted cross
		$95\%~{\rm CLs}~{\rm [fb]}$	95% CLs [fb]	significance $[\sigma]$	section [fb]
comparable sensitivity	ATLAS hadronic [1]	14.2	25.8	2.4	6.9
	CMS hadronic [9]	11.9	17.5	1.0	5.8
	ATLAS single lepton $[6]$	27.6	25.7	0.0	0.0
	CMS single lepton [5]	14.9	16.8	0.3	2.4
	ATLAS double lepton $[7]$	19.5	28.9	0.3	4.1
	CMS double lepton [5]	14.4	27.4	1.5	10.0

Combination of all channels

- $\sigma \times BR(X \rightarrow WZ) \approx 6 \text{ fb}^{-1}$
- while $\sigma \times BR(X \rightarrow WW) \approx 0 \text{ fb}^{-1}$
- within about 2σ of SM
- what about HV and tb final states?

Comparison CMS / ATLAS

I) Should we be excited about this?

Intriguing, since upward fluctuations in several channels, BUT:

- the fluctuations are small
- the "signal" is not visible in all channels
- nothing in most sensitive channel ($\ell \vee$ +jet)

0

10

2) Should I try to explain this with a new BSM theory? If you like...

3) Will you follow up in Run 2?

Definitely! We will know more with 3-5 fb⁻¹ at 13 TeV!

 $\sigma(pp \rightarrow X) \times BR(X \rightarrow WW)$ [fb]

VH Resonances

$VH \rightarrow (q\bar{q})(b\bar{b}) \text{ or } (q\bar{q})(q\bar{q}q\bar{q}q)$

- ► Fraction of $H \rightarrow b\bar{b}$ events failing b-tagging, but passing τ_{42} selection non-negligible since BR($H \rightarrow b\bar{b}$) > BR($H \rightarrow WW \rightarrow qqqq$)
 - Need to consider all possible Higgs decays in analysis
 - Check for $H \rightarrow b\bar{b}$ tag before $H \rightarrow WW \rightarrow qqqq$ tag

WH→ (ℓ∨) (bb̄)

• Analysis similar to $WV \rightarrow \ell V V_{jet}$

Roman Kogler

- Background estimate from lower M_{jet} sideband region
- Extrapolation of M_{WH} shape to signal region (α method)
- See 3 events at $M_{WH} \sim 1.8 \text{ TeV}$ (< 0.3 expected)
- nothing in µ channel 19.7 fb⁻¹ (8 TeV) CMS Preliminary e+µ combined 19.7 fb⁻¹ (8 TeV) 10 combined σ_{95%}*BR(W'→WH) (pb) 10² Events / (100 GeV) CMS Data (e_v) Full CL_s Observed significance Preliminary W+jets Full CL_s Expected ± 1 σ W' HVT B(gv=3) Full CL_s Expected $\pm 2\sigma$ $(e+\mu)$ of NW/WZ HVT B(gv=3):xsec_{W'} * BR(W' \rightarrow WH) Тор LH model:xsec_{w'} * ${}^{*}BR(W' \rightarrow WH)$ Uncertainty 2.2σ 10 (1.90 global) 10 1 10⁻² 10⁻¹ 10^{-3} 10^{-2} 1000 2000 800 1500 800 1000 1200 1400 1600 1800 2000 2200 2400 $M_{W'}$ (GeV) M_{WH} (GeV)

28

[PAS EXO-14-010]

iet

take all decay modes into account

decay mode

T→evv

τ→μνν

τ→had+v

- main discriminator of T_{had} vs q/g is MVA based isolation, summing energies of particles around cones of T decay products
- remove decay products of other τ from isolation cone

29

tt and tb Resonances

Z'→tt̄ {+Jets Resolved

Conventional analysis

- I isolated lepton
- 4 jets, at least on b-tag
- Reconstruction of $t\bar{t}$ system

$$\chi^2 = \chi^2_{m(tlep)} + \chi^2_{m(thad)} + \chi^2_{m(whad)} + \chi^2_{p_{\rm T}(t\bar{t})}$$

with

$$\chi_x^2 = (x_{meas} - x_{MC})^2 / \sigma_{MC}^2$$

Background

- continuously falling function
 Signal
- fit to MC templates

[PAS-B2G-12-007, B2G-13-008, arXiv:1506.03062]

Z'→tī Dilepton

Selection of two non-isolated leptons (ee, $e\mu$, $\mu\mu$)

- I tight or 2 loose b-tagged jets
- control $t\bar{t}$ background in sideband region, defined by $\Delta R_{min}(\ell_2, jet) > 1.5$

32

[B2G-13-008, arXiv:1506.03062]

Z'→tī {+Jets

- Cascading selection with non-isolated lepton
 - highly boosted events with I CMS t-tagged jet
 - χ^2 discriminator: select partially resolved and merged hadronic decays

Searches with boosted signatures in CMS

Mistag rate of t-tagged jets from W+jets sideband

[B2G-13-008, arXiv:1506.03062]

Z'→tt̄ Fully Hadronic

- 2 CA jets, back-to-back
 - R=0.8, p_T > 400 GeV: CMS t tagger
 - R=1.5, $p_T > 200$ GeV: HEPTopTagger
- QCD multijet background estimation from mistag rate in sideband region (inverted mass criteria)
 - mistag rate depends on p_T , T_{32} and b-tag discriminator

υн

茁

[B2G-13-008, arXiv:1506.03062]

Z'→tt̄ Fully Hadronic

- Categorization of events
 - low and high mass, H_T , $|\Delta y|$ and N_{btag}
- Estimation of t-tagging efficiency correction
 - combined maximum-likelihood with lepton+jets channel

Z'→tt̄ Combination

Channels contribute to sensitivity in different mass regions

Observed limits: no significant deviations from expected Exclude $g_{KK} \rightarrow t\bar{t}$ for $M_{gKK} < 2.8 \text{ TeV}$ (2.7 expected)

[B2G-12-010, JHEP 05, 108(2014)]

W'→tb {+Jets Resolved

Exclusion limits

Ш

n,

M(W'_R) > 2.03 TeV (2.09 TeV expected)

Roman Kogler

Limits for left- and right-handed couplings

1000

e/u+jets sample $N_{b tags} = 1 \text{ or } 2$

1500

2000

10⁻²

 10^{-3}

²⁵⁰⁰ 300 M(W'_B) [GeV]

3000

[B2G-12-009, arXiv:1509.06051]

W'→tb Fully Hadronic

- QCD multijet background from sideband
 - N_{subjets} < 3, no b-tag on ak5 jet
 - other kinematics unchanged
- Similar sensitivity as I+jets channel
- Combination with lepton+jets channel

Vector-like Quarks

$T \rightarrow tH Fully Hadronic$ [B2G-14-002, arXiv:1503.01952]

All-hadronic analysis in t+H channel

- Special substructure analysis
 - I HEP top-tagger jet and I or 2 $H \rightarrow b\bar{b}$ jets
 - Analysis possible because of subjet b-tagging

• Exclusion limits: $M_T < 747$ (701) GeV for 100% BR T \rightarrow t+H

t jet

H_{jet}

[PAS B2G-12-013, PAS B2G-12-017, B2G-12-015 PLB 279, 149 (2014), B2G-13-005, arXiv:1509.04177]

 $T \rightarrow bW, tZ, tH$ $p \xrightarrow{V \mid l \ W \mid b/q} p CMS$ $p \xrightarrow{T/Q} p V_{jet}$

Inclusive lepton analyses

- Single-lepton channel
 - Hadronic W-tag and top-tagging
 - Kinematic fit for reconstruction
 - BDT for best overall sensitivity
- Multi-lepton channel
 - Counting experiment in high S_T region

All-hadronic analysis

2V-tagged jets, I or 2 b-tagged jets

- Combination: sensitivity for bW, tZ and tH final states
- Exclusion limits: between 790 and 890 GeV

Harvest of Run I

Outlook for Run 2

PU in Run 2

- Various methods are studied for pileup mitigation in Run 2
- Example: PUPPI (PileUp Per Particle Identification)
 - Use knowledge of origin of PU charged particles to deduce information on neutral PU component
 - Reweight neutrals according to their probability to originate from PU
- Intuitive correction for jet substructure observables

V Tagging in Run 2

- Jet $p_T > 1.5$ TeV: tracking resolution and efficiency degrade, such that ECAL and HCAL dominate jet substructure reconstruction
- Extend particle flow algorithm
 - use fine ECAL granularity to determine multiplicity of hadrons in jet
 - Split hadron excess energy in ECAL+HCAL according to direction and energy distribution of ECAL clusters ("split PF neutrals")
- New tool: Softdrop for mass reconstruction and subjet finding

45

t Tagging in Run 2

New methods and algorithms available

- A few examples
- Soft drop for mass and subjet reconstruction
- Shower deconstruction
 - calculate probability for a jet to originate from a top quark decay
 - using QCD splitting functions
 - similarity to matrix-element method
- MultiR HEP Top Tagger
 - shrink effective cone size of jet, adds additional separation power
- Improvements in subjet b tagging
 - Secondary vertex finding independent of jets [CMS DP-14-031]

Summary

Substructure methods crucial for new physics searches

Even more important at Run 2

Conclusion

Celebrated a huge success not long ago

- Depressing that we did not find anything else?
- We have just started!
- Run I: only a glimpse into the parameter space that's explorable
- Consider it a 'training run' (for BSM searches)
 - Incredible how much we learned about the tools and techniques
- No one said it would be easy...

Conclusion

Celebrated a huge success not long ago

- Depressing that we did not find anything else?
- We have just started!
- Run I: only a glimpse into the parameter space that's explorable
- Consider it a 'training run' (for BSM searches)
 - Incredible how much we learned about the tools and techniques
- No one said it would be easy...

But no one said it'd be this hard No one said it would be easy No one thought we'd come this far [Sheryl Crow, 1993]

Additional Material

Jet Grooming

"Trimming" http://arxiv.org/abs/0912.1342

(D. Krohn, J. Thaler, L. Wang)

• uses k_t algorithm to create subjets of size R_{sub} from the constituents of the large-R jet: any subjets failing $p_Ti / p_T < f_{cut}$ are removed

- "Pruning" http://arxiv.org/abs/0912.0033 (S. Ellis, C. Vermilion, J. Walsh)
 - Recombine jet constituents with C/A or kt while vetoing wide angle (R_{cut}) and softer (z_{cut}) constituents. Does not recreate subjets but prunes at each point in jet reconstruction

Jet Grooming

***Mass drop/filtering**" http://arxiv.org/abs/0802.2470 (J. Butterworth, A. Davidson, M. Rubin, G. Salam)

• Identify relatively symmetric subjets, each with significantly smaller mass than their sum

[EXO-13-009, JHEP08, 174 (2014)] V+Jets Background in {V+Jet and {{+Jet

- Obtain V+jets background from low mass sideband in M_{jet}
- Shape of M_{VV} extrapolated to signal region using transfer function

$$\alpha_{\rm MC}(m_{\rm VV}) = \frac{F_{\rm MC,SR}^{\rm V+jets}(m_{\rm VV})}{F_{\rm MC,SB}^{\rm V+jets}(m_{\rm VV})}$$

advantage: retain sensitivity in tails

- Correct sideband for non-V+jets backgrounds
- Validate in simulation and high M_{jet} sideband

Ш

笧

