ULB, Bruxelles October 12th 2012

Phenomenology of the flavour messenger sector

Lorenzo Calibbi ULB

based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arXiv:1203.1489 [hep-ph] & arXiv:1204.1275 [hep-ph]

Motivations

Hierarchy of SM fermion masses and mixing

Up quarks

CKM matrix

A dynamical explanation?

- SM fermions charged under a new horizontal symmetry G_F
- G_F forbids Yukawa couplings at the renormalisable level
- $\mathit{G}_{\!F}$ spontanously broken by "flavons" vevs $\langle \phi_I
 angle$
- Yukawas arise as higher dimensional operators

Froggatt Nielsen '79 Leurer Seiberg Nir '92, '93

$$W_{yuk} = y_{ij}^U q_i u_j^c h_u + y_{ij}^D q_i d_j^c h_d$$

$$y_{ij}^{U,D} \sim \prod_{I} \left(\frac{\langle \phi_I \rangle}{M}\right)^{n_{I,ij}^{U,D}}$$

 $\phi_I < M \implies \epsilon_I \equiv \langle \phi_I \rangle / M = n_{I,ij}^{U,D}$ dictated by the symmetry

What is G_F ?

12/10/2012

$G_{\!F}$ abelian or non-abelian, continuous or discrete

U(1), U(1)xU(1), SU(2), SU(3), SO(3), A₄...

Froggatt Nielsen '79; Leurer Seiberg Nir '92, '93; Ibanez Ross '94; Dudas Pokorski Savoy '95; Binetruy Lavignac Ramond '96; Barbieri Dvali Hall '95; Pomarol Tommasini '95; King Ross '01; Altarelli Feruglio '05...

U(1) example Chankowski et al. '05 $\implies \begin{array}{c} y_{ij}^{\cup} \sim \epsilon^{q_i + u_j} \\ y_{ij}^{D} \sim \epsilon^{q_i + d_j} \end{array} \quad \epsilon = \phi/M \approx 0.23$ $q_{1,2,3}$: (3,2,0) $u_{1,2,3}^c$: (3,2,0) ϕ : -1 $d_{1,2,3}^c$: (2,1,1) $Y_u \sim \begin{pmatrix} \epsilon^3 & \epsilon^3 & \epsilon^3 \\ \epsilon^5 & \epsilon^4 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & \mathbf{1} \end{pmatrix}$ $Y_d \sim \begin{pmatrix} \epsilon^3 & \epsilon^1 & \epsilon^4 \\ \epsilon^4 & \epsilon^3 & \epsilon^3 \\ \epsilon^2 & \epsilon^4 & \epsilon^4 \end{pmatrix}$ What is *M*?

- If smaller than M_{Pl} , M can be interpreted as the mass scale of new degrees of freedom: the "flavour messengers"
- New fields in vector-like reprs. of the SM group and G_F -charged
- Effective Yukawa couplings generated by integrating out the messengers.
- Two possibilities: heavy fermions $(R_P +)$ or heavy scalars $(R_P -)$:

mixing with (MS)SM fermions or scalar fields

$$W \supset M_Q \overline{Q}_{\alpha} Q_{\alpha} + M_U \overline{U}_{\alpha} U_{\alpha} + \phi_I \left(\overline{Q}_{\alpha} Q_{\beta} + \overline{U}_{\alpha} U_{\beta} \right) + \phi_I \left(\overline{Q}_{\alpha} q_i + \overline{U}_{\alpha} u_i^c \right) + h_u \left(Q_{\alpha} U_{\beta} + Q_{\alpha} u_i^c + q_i U_{\alpha} \right)$$

In the fundamental theory small fermion masses arise from small mixing among SM fermion and messengers

$$+ \phi_I \left(\overline{Q}_{\alpha} q_i + \overline{U}_{\alpha} u_i^c \right) + h_u \left(Q_{\alpha} U_{\beta} + Q_{\alpha} u_i^c + q_i U_{\alpha} \right)$$

min. messenger #:

Full-rank Yukawas, if:
$$\det M_{\text{full}}^{u,d} \propto \det m_{\text{light}}^{u,d} \propto \prod_{I} \phi_{I}^{n_{I}} v_{u,d}^{3} \implies N_{min} = \sum_{I} n_{I}$$

Leurer Seiberg Nir '92

12/10/2012

"Scalar" UV completion (HUVC)

Chiral superfields: $H_{\alpha} + \overline{H}_{\alpha} \quad S_{\alpha} + \overline{S}_{\alpha}$

 $W \supset M_H \overline{H}_{\alpha} H_{\alpha} + M_S \overline{S}_{\alpha} S_{\alpha} + \phi_I \left(\overline{H}_{\beta} H_{\alpha} + \overline{S}_{\beta} S_{\alpha} + \overline{S}_{\alpha} \phi_J \right)$ $+ \overline{H}_{\alpha} S_{\beta} h_u + \overline{H}_{\alpha} \phi_I h_u + q_i u_j^c H_{\alpha}$

Small fermion masses arise from small H-messenger vevs

$$\frac{\partial W}{\partial H_{\alpha}} = \frac{\partial W}{\partial \overline{H}_{\alpha}} = \dots = 0 \implies \langle H_{o} \rangle = \epsilon^{n} \langle h_{u} \rangle$$

12/10/2012

Chiral superfields: $H_{\alpha} + \overline{H}_{\alpha} \quad S_{\alpha} + \overline{S}_{\alpha}$

 $W \supset M_H \overline{H}_{\alpha} H_{\alpha} + M_S \overline{S}_{\alpha} S_{\alpha} + \phi_I \left(\overline{H}_{\beta} H_{\alpha} + \overline{S}_{\beta} S_{\alpha} + \overline{S}_{\alpha} \phi_J \right)$ $+ \overline{H}_{\alpha} S_{\beta} h_u + \overline{H}_{\alpha} \phi_I h_u + q_i u_j^c H_{\alpha}$

Small fermion masses arise from small H-messenger vevs

easy to obtain texture zeros Ramond Roberts Ross '93 (messenger sector can directly affect Yukawas)

How light can the messenger sector be?

By construction always present couplings (with O(1) coeffs.) of the form:

12/10/2012

Low-energy messengers

Process	Relevant operators	Bound on c/TeV^2			
		Re	Im		
	$(\overline{s}_X \gamma^\mu d_X)(\overline{s}_X \gamma^\mu d_X)$	9.0×10^{-7}	3.4×10^{-9}		
$\Delta m_K; \epsilon_K$	$(\overline{s}_L \gamma^\mu d_L) (\overline{s}_R \gamma^\mu d_R)$	$1.9 imes 10^{-7}$	7.2×10^{-10}		
	$(\overline{s}_L d_R)(\overline{s}_R d_L)$	4.7×10^{-9}	1.8×10^{-11}		
	$(\overline{c}_X \gamma^\mu u_X)(\overline{c}_X \gamma^\mu u_X)$	4.7×10^{-7}	$1.3 \times 10^{-7} \ [3.8 \times 10^{-9}]$		
$\Delta m_D; q/p _D, A_{\Gamma}$	$(\overline{c}_L \gamma^\mu u_L)(\overline{c}_R \gamma^\mu u_R)$	7.4×10^{-7}	$2.1 \times 10^{-7} \ [5.9 \times 10^{-9}]$		
	$(\overline{c}_L u_R)(\overline{c}_R u_L)$	4.1×10^{-8}	$1.1 \times 10^{-8} [3.3 \times 10^{-10}]$		
	$(\overline{b}_X \gamma^\mu d_X) (\overline{b}_X \gamma^\mu d_X)$	2.9×10^{-6}	$2.6 imes 10^{-6}$		
$\Delta m_{B_d}; S_{\psi K_S}$	$(\overline{b}_L \gamma^\mu d_L) (\overline{b}_R \gamma^\mu d_R)$	4.8×10^{-6}	4.3×10^{-6}		
	$(\overline{b}_L d_R)(\overline{b}_R d_L)$	4.2×10^{-7}	3.8×10^{-7}		
	$(\overline{b}_X \gamma^\mu s_X) (\overline{b}_X \gamma^\mu s_X)$	$6.7 imes 10^{-5}$	$5.7 \times 10^{-5} \ [4.1 \times 10^{-6}]$		
$\Delta m_{B_s}; S_{\psi\phi}$	$(\overline{b}_L \gamma^\mu s_L) (\overline{b}_R \gamma^\mu s_R)$	1.1×10^{-4}	$9.4 \times 10^{-5} \ [6.7 \times 10^{-6}]$		
	$(\overline{b}_L s_R)(\overline{b}_R s_L)$	$9.7 imes 10^{-6}$	$8.2 \times 10^{-6} \ [5.8 \times 10^{-7}]$		
$\mu ightarrow e \gamma$	$\overline{\mu}_X \sigma^{\mu\nu} e_Y F_{\mu\nu}$	$2.9 \times 10^{-10} \ [5.9 \times 10^{-11}]$			
$\mu \rightarrow \rho \rho \rho$	$(\overline{\mu}_X \gamma^\mu e_X)(\overline{e}_X \gamma^\mu e_X)$	$2.3 \times 10^{-5} \ [2.3 \times 10^{-7}]$			
$\mu ightarrow$ CCC	$(\overline{\mu}_X e_Y)(\overline{e}_Y e_X)$	$6.5 \times 10^{-5} \ [6.5 \times 10^{-7}]$			

12/10/2012

Low-energy messengers

				_
Operator	HUVC	FUVC	MFV	[
$(\overline{s}_L \gamma^\mu d_L) (\overline{s}_L \gamma^\mu d_L)$	$L\theta_{12}^{DL}\theta_{12}^{DL}$	$L\theta_{12}^{DL}\theta_{12}^{DL}$	ϵ^{10}	
$(\overline{s}_R \gamma^\mu d_R)(\overline{s}_R \gamma^\mu d_R)$	$L\theta_{12}^{DR}\theta_{12}^{DR}$	$L\theta_{12}^{DR}\theta_{12}^{DR}$	$\epsilon^{10}y_d^2y_s^2$	
$(\overline{s}_L d_R)(\overline{s}_R d_L)$	$\theta_{12}^{DL}\theta_{12}^{DR}$	pprox 0	$\epsilon^{10} y_d y_s$	
$(\overline{c}_L \gamma^\mu u_L)(\overline{c}_L \gamma^\mu u_L)$	$L\theta_{12}^{UL}\theta_{12}^{UL}$	$L\theta_{12}^{UL}\theta_{12}^{UL}$	ϵ^{10}	
$(\overline{c}_R \gamma^\mu u_R)(\overline{c}_R \gamma^\mu u_R)$	$L\theta_{12}^{UR}\theta_{12}^{UR}$	$L\theta_{12}^{UR}\theta_{12}^{UR}$	$\epsilon^{10}y_b^4y_u^2y_c^2$	
$(\overline{c}_L u_R)(\overline{c}_R u_L)$	$\theta_{12}^{UL}\theta_{12}^{UR}$	pprox 0	$\epsilon^2 y_d^2 y_s^2 y_u y_c$	
$(\overline{b}_L \gamma^\mu d_L) (\overline{b}_L \gamma^\mu d_L)$	$L\theta_{13}^{DL}\theta_{13}^{DL}$	$L\theta_{13}^{DL}\theta_{13}^{DL}$	ϵ^6	
$(\overline{b}_R \gamma^\mu d_R) (\overline{b}_R \gamma^\mu d_R)$	$L\theta^{DR}_{13}\theta^{DR}_{13}$	$L\theta_{13}^{DR}\theta_{13}^{DR}$	$\epsilon^6 y_d^2 y_b^2$	
$(\overline{b}_L d_R)(\overline{b}_R d_L)$	$ heta_{13}^{DL} heta_{13}^{DR}$	≈ 0	$\epsilon^6 y_d y_b$	
$(\overline{b}_L \gamma^\mu s_L) (\overline{b}_L \gamma^\mu s_L)$	$L\theta^{DL}_{23}\theta^{DL}_{23}$	$L\theta^{DL}_{23}\theta^{DL}_{23}$	ϵ^4	
$(\overline{b}_R \gamma^\mu s_R) (\overline{b}_R \gamma^\mu s_R)$	$L\theta^{DR}_{23}\theta^{DR}_{23}$	$L\theta^{DR}_{23}\theta^{DR}_{23}$	$\epsilon^4 y_s^2 y_b^2$	
$(\overline{b}_L s_R)(\overline{b}_R s_L)$	$ heta_{23}^{DL} heta_{23}^{DR}$	≈ 0	$\epsilon^4 y_s y_b$	
$\overline{\mu}_X \sigma^{\mu\nu} e_Y F_{\mu\nu}$	$m_{\mu}L\max(\theta_{12}^{EL},\theta_{12}^{ER})$	$m_{\mu}L\max(\theta_{12}^{EL},\theta_{12}^{ER})$	-	
$(\overline{\mu}_X \gamma^\mu e_X)(\overline{e}_X \gamma^\mu e_X)$	$L \theta_{12}^{EX}$	$L \theta_{12}^{EX}$	-	
$(\overline{\mu}_X e_Y)(\overline{e}_Y e_X)$	$\theta_{12}^{EX}\theta_{12}^{EL}\theta_{12}^{ER}$	pprox 0		
	$\begin{array}{c} \text{Operator} \\ (\overline{s}_L \gamma^\mu d_L) (\overline{s}_L \gamma^\mu d_L) \\ (\overline{s}_R \gamma^\mu d_R) (\overline{s}_R \gamma^\mu d_R) \\ (\overline{s}_R d_R) (\overline{s}_R d_L) \\ (\overline{s}_L d_R) (\overline{s}_R d_L) \\ (\overline{c}_L \gamma^\mu u_L) (\overline{c}_L \gamma^\mu u_L) \\ (\overline{c}_R \gamma^\mu u_R) (\overline{c}_R \gamma^\mu u_R) \\ (\overline{c}_L u_R) (\overline{c}_R u_L) \\ (\overline{b}_L \gamma^\mu d_L) (\overline{b}_L \gamma^\mu d_L) \\ (\overline{b}_R \gamma^\mu d_R) (\overline{b}_R \gamma^\mu d_R) \\ (\overline{b}_L d_R) (\overline{b}_R d_L) \\ (\overline{b}_L q_R) (\overline{b}_R \gamma^\mu s_L) \\ (\overline{b}_R \gamma^\mu s_R) (\overline{b}_R \gamma^\mu s_R) \\ (\overline{b}_L s_R) (\overline{b}_R s_L) \\ \overline{\mu}_X \sigma^{\mu\nu} e_Y F_{\mu\nu} \\ (\overline{\mu}_X e_Y) (\overline{e}_Y e_X) \end{array}$	OperatorHUVC $(\overline{s}_L \gamma^{\mu} d_L) (\overline{s}_L \gamma^{\mu} d_L)$ $L \theta_{12}^{DL} \theta_{12}^{DL}$ $(\overline{s}_R \gamma^{\mu} d_R) (\overline{s}_R \gamma^{\mu} d_R)$ $L \theta_{12}^{DR} \theta_{12}^{DR}$ $(\overline{s}_L d_R) (\overline{s}_R d_L)$ $\theta_{12}^{DL} \theta_{12}^{DR}$ $(\overline{c}_L \gamma^{\mu} u_L) (\overline{c}_L \gamma^{\mu} u_L)$ $L \theta_{12}^{UL} \theta_{12}^{UL}$ $(\overline{c}_R \gamma^{\mu} u_R) (\overline{c}_R \gamma^{\mu} u_R)$ $L \theta_{12}^{UL} \theta_{12}^{UR}$ $(\overline{c}_L u_R) (\overline{c}_R u_L)$ $\theta_{12}^{UL} \theta_{12}^{DR}$ $(\overline{b}_L \gamma^{\mu} d_L) (\overline{b}_L \gamma^{\mu} d_L)$ $L \theta_{13}^{DL} \theta_{13}^{DL}$ $(\overline{b}_R \gamma^{\mu} d_R) (\overline{b}_R \gamma^{\mu} d_R)$ $L \theta_{13}^{DR} \theta_{13}^{DR}$ $(\overline{b}_L \gamma^{\mu} s_L) (\overline{b}_L \gamma^{\mu} s_L)$ $L \theta_{23}^{DL} \theta_{23}^{DR}$ $(\overline{b}_R \gamma^{\mu} s_R) (\overline{b}_R \gamma^{\mu} s_R)$ $L \theta_{23}^{DL} \theta_{23}^{DR}$ $(\overline{b}_L s_R) (\overline{b}_R s_L)$ $\theta_{23}^{DL} \theta_{23}^{DR}$ $(\overline{\mu}_X \sigma^{\mu\nu} e_Y F_{\mu\nu})$ $m_\mu L \max(\theta_{12}^{EL}, \theta_{12}^{ER})$ $(\overline{\mu}_X \gamma^{\mu} e_X) (\overline{e}_X \gamma^{\mu} e_X)$ $L \theta_{12}^{EX} \theta_{12}^{EL} \theta_{12}^{ER}$	$\begin{array}{ c c c c } \hline \mbox{Purplex} & \mbox{HUVC} & \mbox{FUVC} \\ \hline \mbox{$(\bar{s}_L\gamma^\mu d_L)(\bar{s}_L\gamma^\mu d_L)$} & $L$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{ c c c c } \hline \text{Operator} & \text{HUVC} & \text{FUVC} & \text{MFV} \\ \hline (\overline{s}_{L}\gamma^{\mu}d_{L})(\overline{s}_{L}\gamma^{\mu}d_{L}) & L \theta_{12}^{DL} \theta_{12}^{DL} & L \theta_{12}^{DL} \theta_{12}^{DL} & \epsilon^{10} \\ \hline (\overline{s}_{R}\gamma^{\mu}d_{R})(\overline{s}_{R}\gamma^{\mu}d_{R}) & L \theta_{12}^{DR} \theta_{12}^{DR} & L \theta_{12}^{DR} \theta_{12}^{DR} & \epsilon^{10} y_{d}^{2} y_{s}^{2} \\ \hline (\overline{s}_{L}d_{R})(\overline{s}_{R}d_{L}) & \theta_{12}^{DL} \theta_{12}^{DL} & R & 0 & \epsilon^{10} y_{d} y_{s} \\ \hline (\overline{c}_{L}\gamma^{\mu}u_{L})(\overline{c}_{L}\gamma^{\mu}u_{L}) & L \theta_{12}^{UL} \theta_{12}^{UL} & L \theta_{12}^{UL} \theta_{12}^{UL} & \epsilon^{10} \\ \hline (\overline{c}_{R}\gamma^{\mu}u_{R})(\overline{c}_{R}\gamma^{\mu}u_{R}) & L \theta_{12}^{UL} \theta_{12}^{UR} & R & 0 & \epsilon^{2} y_{d}^{2} y_{s}^{2} y_{u} y_{c} \\ \hline (\overline{c}_{L}u_{R})(\overline{c}_{R}u_{L}) & \theta_{12}^{DL} \theta_{12}^{DL} & R & 0 & \epsilon^{2} y_{d}^{2} y_{s}^{2} y_{u} y_{c} \\ \hline (\overline{b}_{L}\gamma^{\mu}d_{L})(\overline{b}_{L}\gamma^{\mu}d_{L}) & L \theta_{13}^{DL} \theta_{13}^{DR} & L \theta_{13}^{DL} \theta_{13}^{DL} & R^{0} \\ \hline (\overline{b}_{L}\gamma^{\mu}d_{L})(\overline{b}_{L}\gamma^{\mu}d_{R}) & L \theta_{13}^{DL} \theta_{13}^{DR} & R & 0 & \epsilon^{6} y_{d}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}\alpha_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{13}^{DL} \theta_{13}^{DR} & R & 0 & \epsilon^{6} y_{d}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}\alpha_{R})(\overline{b}_{R}\alpha_{L}) & L \theta_{23}^{DL} \theta_{23}^{DR} & L \theta_{23}^{DL} \theta_{23}^{DL} & R^{0} & \epsilon^{6} y_{d}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}\alpha_{R})(\overline{b}_{R}\alpha_{L}) & U \theta_{23}^{DL} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{23}^{DR} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{23}^{DR} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s}^{2} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{23}^{DR} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{23}^{DR} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{23}^{DR} \theta_{23}^{DR} & R & 0 & \epsilon^{4} y_{s} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{12}^{DR} \theta_{12}^{DR} & R & 0 & \epsilon^{4} y_{s} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{12}^{DR} \theta_{12}^{DR} & R & 0 & \epsilon^{4} y_{s} y_{b}^{2} \\ \hline (\overline{b}_{L}x_{R})(\overline{b}_{R}\alpha_{L}) & \theta_{12}^{DR} \theta_{12}^{DR} & R & 0 & - \end{array}$

Table 2. Relevant operators and their minimal Wilson coefficients in units of $1/M^2$ for HUVC FUVC and MFV. Here $L \simeq 1/16\pi^2$, X, Y = L, R with $Y \neq X$.

12/10/2012

How light can the messenger sector be?

Bounds on <i>M</i> (in TeV):		CF	РС	L		CI	PV	
$K - \overline{K}$		e^{DL}_{12} ϵ ϵ ϵ 0	$\begin{array}{c} \theta_{12}^{DR} \\ 0 \\ \epsilon \\ 1 \\ 1 \end{array}$	HUV 19 3, 40 4, 90 42	VC HUVC 310 00 54,000 00 80,000 680	C* FUV 19 0 19 0 42 42	VC FUV 310 310 680 680	
$D-\overline{D}$	$\begin{array}{c} \theta_{12}^{UL} \\ \epsilon \\ \epsilon \\ \epsilon \\ 0 \end{array}$	$\begin{array}{c} \theta_{12}^{UR} \\ 0 \\ \epsilon \\ 1 \\ 1 \end{array}$	HU 1, 1,	JVC 27 100 700 58	HUVC [*] 51 [300 2,200 [13, 3,200 [19, 110 [650	* F1] (000] 000])]	UVC FU 27 51 27 51 58 110 58 110	JVC* [300] [300] 0 [650] 0 [650]
$\implies M \gtrsim 20 \text{ TeV}$]	(<i>M</i>	$I \gtrsim$	O(1)) TeV n	on-ab	elian s	ymm.

Still possible: large effects in LFV decays, $B_{d,s}$ mixing and decays, etc.

 $\mathcal{L}_{\text{eff}} \sim \left(|\alpha|^4 \right) \left(\overline{f}_{L1} \gamma^{\mu} f_{L1} + \overline{f}_{L2} \gamma^{\mu} f_{L2} \right)^2 \implies \mathcal{L}_{\text{eff}} \sim |\alpha|^4 \left(\overline{f}_{L1} \gamma^{\mu} f_{L1} + \overline{f}_{L2} \gamma^{\mu} f_{L2} + \Delta_{12} \overline{f}_{L2} \gamma^{\mu} f_{L2} \right)^2$ Universality of the couplings broken by the flavour symmetry breaking

• L and R in fundamentals:	$\Delta_{12} \sim \phi_2 \phi_2 \sim y_{22}$	(ex.: SU(3), U(2),)
	$\Delta_{i3} \sim \phi_3 \phi_3 \sim y_{33}$	(01111 0 0 (0), 0 (2))
• I in fund R singlet.	$\Delta_{12} \sim \phi_2 \phi_2 \sim y_{22}^2$	$(ex \cdot SO(3) A)$
(or viceversa)	$\Delta_{i3} \sim \phi_3 \phi_3 \sim y_{33}^2$	$(ex, oo(0), m_4)$
I arger suppr but in the s	inglet sector no suppres	sion $\rightarrow U(1)$ results

[Larger suppr. but in the singlet sector no suppression $\rightarrow U(1)$ results]

Mass splitting	Suppression factor in $SU(3)_F$	Suppression factor in $U(2)_F$
Δ_{13}^U	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$
Δ_{23}^U	$\mathcal{O}\left(1 ight)$	$\mathcal{O}\left(1 ight)$
Δ_{12}^U	ϵ^4	ϵ^4
Δ_{13}^D	$\epsilon^3 aneta$	$\mathcal{O}\left(1 ight)$
Δ^D_{23}	$\epsilon^3 aneta$	$\mathcal{O}\left(1 ight)$
Δ_{12}^D	$\epsilon^5 aneta$	$\epsilon^5 aneta$

In non-abelian models, messengers can be as light as O(1) TeV

Low-energy messengers: LFV

Large leptonic rotations \implies BR $(\mu \rightarrow eee)/BR(\mu \rightarrow e\gamma)$ up to O(10) In SUSY: $\sim \alpha_{em}$ (both decays from dipole ops.) Is the theory perturbative up to high energies?

Bounds from perturbativity of the gauge couplings (with SUSY):

12/10/2012

Do ultra-heavy messengers still induce FV effects?

The messenger sector can still interfere with SUSY breaking and affect the sfermion masses

Off-diagonal entries from spurion analysis (U(1) example):

$$\tilde{m}_{ij}^2 \sim \tilde{m}^2 \left(\frac{\phi}{M}\right)^{q_j - q_i}$$

Considering messengers (with $M \ll M_{SUSY}$):

$$K \supset \frac{X^{\dagger}X}{M_S^2} \left(a_i q_i^{\dagger} q_i + b_{\alpha} Q_{\alpha}^{\dagger} Q_{\alpha} + c_{i\alpha} q_i^{\dagger} Q_{\alpha} + d_{\beta} H_{\beta}^{\dagger} H_{\beta} \dots \right) + \mathcal{O}\left(\phi/M_S\right)$$

(canonically normalized superfields)

Flavour violation in general induced by quark-messenger mixing, but:

no off-diagonal entries with only H-messengers or universal masses (e.g. GMSB)

Radiative breaking of flavour universality

Even if sfermions are universal at M_{SUSY} , if $M < M_{SUSY}$:

$$\tilde{m}_{ij}^2(M_S) = \begin{pmatrix} \tilde{m}_0^2 & 0\\ 0 & \tilde{m}_0^2 \end{pmatrix} \xrightarrow{\text{RGEs}} \tilde{m}_{ij}^2(M) = \begin{pmatrix} \tilde{m}_0^2 + \Delta \tilde{m}_{11}^2 & \Delta \tilde{m}_{12}^2\\ \Delta \tilde{m}_{21}^2 & \tilde{m}_0^2 + \Delta \tilde{m}_{22}^2 \end{pmatrix}$$

universality radiatively broken by the presence of messengers

cf. Hall Kostelecky Raby '86

At low energy (in the SCKM basis): $\tilde{m}_{12}^2 \approx \Delta \tilde{m}_{12}^2 + \left(\Delta \tilde{m}_{22}^2 - \Delta \tilde{m}_{11}^2\right) \theta_{12}$ U(1) ex.: $\Delta \tilde{m}_{12}^2 \propto \epsilon^{q_1-q_2} \tilde{m}^2$, $\Delta \tilde{m}_{22}^2 - \Delta \tilde{m}_{11}^2 \propto \tilde{m}^2$, $\theta_{12} \sim \frac{y_{12}^D}{y_{22}^D} \propto \frac{\epsilon^{q_1+d_2}}{\epsilon^{q_2+d_2}} = \epsilon^{q_1-q_2}$

Estimate (abelian case): $\tilde{m}_{12}^2 \approx \left(\Delta \tilde{m}_{22}^2 - \Delta \tilde{m}_{11}^2\right) \theta_{12} \approx \theta_{12} \frac{\tilde{m}_0^2}{16\pi^2} 10 \log \frac{M_S}{M}$

Non-abelian: additional suppression from correlated coefficients

RG effect as sizeable as the tree-level \tilde{m}_{ij}^2 expected by the flavour symm.!

Mass insertions:

$$\delta_{12} \equiv \tilde{m}_{12}^2 / \sqrt{\tilde{m}_{11}^2 \tilde{m}_{22}^2}$$
$$\delta_{12}^{\text{ab.}} \approx \frac{\theta_{12}}{16\pi^2} 10 \ \mathcal{R} \log \frac{M_S}{M}$$

rotation angle	U(1)	SU(3)
$\theta_{12}^{DL}, \theta_{12}^{DR}$	ϵ	$\epsilon \left(\epsilon^3 \right)$
$\langle \theta^D_{12} \rangle$	ϵ	$\epsilon \left(\epsilon^3 \right)$
$\theta_{12}^{UL}, \theta_{12}^{UR}$	ϵ	$\epsilon^2 \left(\epsilon^6 \right)$
$\langle \theta_{12}^U \rangle$	ϵ	$\epsilon^2 \left(\epsilon^6 \right)$
θ_{13}^{DL}	ϵ^3	$\epsilon^{3}\left(\epsilon^{3}\right)$
$ heta_{13}^{DR}$	ϵ	$\epsilon^{3}\left(\epsilon^{3}\right)$
$\langle \theta^D_{13} \rangle$	ϵ^2	$\epsilon^{3}\left(\epsilon^{3}\right)$
$\theta_{12}^{EL}, \theta_{12}^{ER}$	ϵ	$\epsilon \left(\epsilon^3 \right)$
$\langle \theta^E_{12} \rangle$	ϵ	$\epsilon \left(\epsilon^3 \right)$

Bounds:

12		8
$(\delta^D_{XX})_{12}$	9.2×10^{-2} [Re]	$1.2 \times 10^{-2} \; [\text{Im}]$
$\langle \delta^D_{12} \rangle$	1.9×10^{-3} [Re]	$2.6 \times 10^{-4} \; [\text{Im}]$
$(\delta^D_{LR})_{12}$	5.6×10^{-3} [Re]	$7.4 \times 10^{-4} \; [\text{Im}]$
$(\delta^U_{XX})_{12}$	1.0×10^{-1} [Re]	$6.0 \times 10^{-2} \; [\text{Im}]$
$\langle \delta^U_{12} \rangle$	6.2×10^{-3} [Re]	$4.0 \times 10^{-3} \; [\text{Im}]$
$(\delta^U_{LR})_{12}$	1.6×10^{-2} [Re]	$1.6 \times 10^{-2} \; [\text{Im}]$
$(\delta^D_{XX})_{13}$	2.8×10^{-1} [Re]	$6.0 \times 10^{-1} \; [Im]$
$\langle \delta^D_{13} \rangle$	4.2×10^{-2} [Re]	$1.8 \times 10^{-2} \; [Im]$
$(\delta^D_{LR})_{13}$	6.6×10^{-2} [Re]	$1.5 \times 10^{-1} \; [Im]$
$(\delta^E_{LL})_{12}$	2.8×10^{-3}	$[5.7 \times 10^{-4}]$
$(\delta^E_{RR})_{12}$	2.3×10^{-2}	$[4.6 \times 10^{-3}]$
$\langle \delta^E_{12} \rangle$	1.8×10^{-3}	$[3.8 \times 10^{-4}]$
$(\delta_{LR}^E)_{12}$	1.7×10^{-5}	$[3.4 \times 10^{-6}]$

SUSY masses at 1 TeV $\langle \delta_{ij}^f \rangle \equiv \sqrt{(\delta_{LL}^f)_{ij}(\delta_{RR}^f)_{ij}}$

Constraints on light quark rotations

rotation angle	M_S/N_s	$I = 10^8$	$M_S/M = 10$		
$\theta_{12}^{DL}, \theta_{12}^{DR}$	7.9×10^{-2} [Re]	$1.0 \times 10^{-2} \; [\text{Im}]$	6.3×10^{-1} [Re]	$8.2 \times 10^{-2} \; [\text{Im}]$	
$\langle \theta^D_{12} \rangle$	$1.6 \times 10^{-3} \; [\text{Re}]$	$2.2 \times 10^{-4} \; [\text{Im}]$	$1.3 \times 10^{-2} \; [\text{Re}]$	1.8×10^{-3} [Im]	
$\theta_{12}^{UL}, \theta_{12}^{UR}$	8.6×10^{-2} [Re]	$5.1 \times 10^{-2} \; [\text{Im}]$	$6.9 \times 10^{-1} \; [\text{Re}]$	$4.1\times 10^{-1}~[\mathrm{Im}]$	
$\langle heta_{12}^U angle$	5.3×10^{-3} [Re]	$3.4 \times 10^{-3} \text{ [Im]}$	4.3×10^{-2} [Re]	2.7×10^{-2} [Im]	
$\theta_{13}^{DL}, \theta_{13}^{DR}$	2.4×10^{-1} [Re]	$5.1 \times 10^{-1} \; [\text{Im}]$		-	
$\langle heta_{13}^D angle$	3.6×10^{-2} [Re]	$1.5 \times 10^{-2} \; [\text{Im}]$	2.9×10^{-1} [Re]	$1.2 \times 10^{-1} \; [\text{Im}]$	
θ_{12}^{EL}	2.4×10^{-3}	$[4.9 \times 10^{-4}]$	$1.9 imes 10^{-2}$	$[3.9\times10^{-3}]$	
$ heta_{12}^{ER}$	$2.0 imes 10^{-2}$	$[3.9\times10^{-3}]$	$1.6 imes 10^{-1}$	$[3.2\times10^{-2}]$	
$\langle \theta^E_{12} \rangle$	$1.5 imes 10^{-3}$	$[3.3 \times 10^{-4}]$	1.2×10^{-2}	$[2.6 \times 10^{-3}]$	

 $\langle \theta_{12}^D \rangle \equiv \sqrt{\theta_{12}^{DL} \theta_{12}^{DR}}$

SUSY masses at 1 TeV

(additional suppressions in non-abelian models)

Even assuming universality abelian models with $M < M_{SUSY}$ are in trouble

- Horizontal symmetries popular explanation of the SM flavour structure
- Flavour models can be UV completed with heavy fermion and/or scalar messengers
- The messenger sector can have important consequences for Yukawa couplings (textures) and sfermion masses
- FCNC processes directly induced by messenger exchange constrain the mass scale, M > 20 TeV (abelian symm.)
- Non-abelian messengers can be as light as the TeV scale
- Perturbativity up to the GUT/Planck scale typically requires $M > 10^{10}$ GeV
- The running of the soft-masses is affected by messengers for $M < M_{SUSY}$

Universality radiatively broken by messengers

Sfermion off-diagonal entries of the size expected at tree-level

Additional slides

U(1) example

 $q_1 - Q_2 - Q_1 - Q_0 - U_0 - U_1 - U_2 - u_1^c$ $q_1 - Q_2 - Q_1 - Q_0 - D_0 - D_1 - d_1^c$ $q_2 - Q_1' - Q_0' - U_0' - U_1' - u_2^c$ $q_2 - Q'_1 - Q'_0 - D'_0 - d_2^c$ $q_3 - D_0'' - d_3^c$. HUVC $H_{a}^{(x)} + H_{d}^{(x)}$ x = -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5. $W \supset \sum M_x H_u^{(x)} H_d^{(x)} + \lambda_{ij}^u q_i u_j^c H_u^{-(\mathcal{H}(q_i) + \mathcal{H}(u_j))} + \lambda_{ij}^d q_i d_j^c H_d^{(\mathcal{H}(q_i) + \mathcal{H}(d_j))} +$ $\phi \left(\alpha_6 H_d^{(-6)} H_u^{(-5)} + \dots + \alpha_1 H_d^{(-1)} h_u + \alpha_0 h_d H_u^{(1)} + \alpha_{-1} H_d^{(1)} H_u^{(2)} + \dots + \alpha_{-4} H_d^{(4)} H_u^{(5)} \right)$

12/10/2012

Tree-level vs. radiative effects on sfermion masses

Off-diagonal entries from spurion analysis (U(1) example):

$$\tilde{m}_{ij}^2 \sim \tilde{m}^2 \left(\frac{\phi}{M}\right)^{q_j - q_i}$$

Instead, considering messengers (with $M \leq M_{SUSY}$):

$$\tilde{m}^2 \left(a_i q_i^{\dagger} q_i + b_{\alpha} Q_{\alpha}^{\dagger} Q_{\alpha} + c_{i\alpha} q_i^{\dagger} Q_{\alpha} + d_{\beta} H_{\beta}^{\dagger} H_{\beta} + \ldots + \mathcal{O}(\phi/M_S) \right)$$

Running effects (U(1) HUVC example):

$$\begin{split} (m_{\tilde{d}}^2)_{22} &- (m_{\tilde{d}}^2)_{11} \approx \frac{12}{16\pi^2} \tilde{m}_0^2 \left[(\lambda^{d\dagger} \lambda^d)_{11} - (\lambda^{d\dagger} \lambda^d)_{22} \right] \log \frac{M_S}{M}, \\ (m_{\tilde{q}}^2)_{22} &- (m_{\tilde{q}}^2)_{11} \approx \frac{6}{16\pi^2} \tilde{m}_0^2 \left[(\lambda^{u\dagger} \lambda^u)_{11} - (\lambda^{u\dagger} \lambda^u)_{22} + (\lambda^{d\dagger} \lambda^d)_{11} - (\lambda^{d\dagger} \lambda^d)_{22} \right] \log \frac{M_S}{M}. \end{split}$$