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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Introduction
What is wrong with QM theory of neutrino oscillations?

Quantum-mechanical theory of neutrino oscillations is used to analyze
the neutrino experimental data. However QM theory is contradictory
and not complete. Used assumptions are questionable:

4 Why coherent state |να〉 =∑i Vαi|νi〉 can be produced in a reaction with `αwhile a state |`i〉 =
∑

α V∗αi|α〉 is likely to be incoherent?4 Same pν of all massive |νi〉 is unphysical as it depends on reference frame.4 Definite momentum pν implies uncertain position of neutrino δXν ∝ ∞4 Ultra-relativistic assumption is reference frame dependent and sometimes
erroneously lead to factor two difference in oscillation phase

The origin of problems of QM approach is due to ignoring of production
and detection processes. Thus QM postulates the wave function of
neutrino and this is the source of numerous paradoxes.
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Introduction
What is wrong with QM theory of neutrino oscillations?

What can be found in the literature beyond naive QM approach?
Neutrino is considered as wave packets either in QM or in QFT

This successfully resolves a number of problems of naive theory. But such
an approach has its own problems:

. the form of wave packet is a guess. It is hard to quantify the ”width” of
neutrino wave packets

. the wave packets used in the literature are essentially non-relativistic which
is far from (almost) any experiment with neutrino.
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Introduction
Our approach: QFT with relativistic wave packets

Creation and annilihation of particles is described in a consistent way in
QFT
Standard S-matrix theory of QFT works with states of definite
momentum=states uniformly distributed over all space. This is a good
approximation for microscopic scales. It is not valid for calculations of
processes localized in space and time and separated by macroscopic
intervals.
To describe appropriate states one needs a theory of relativistic wave
packets. We constructed such a theory
Relativistic wave packets (RWP) — states described by mean
momentum and coordinate and their corresponding «widths»
The mean position of RWP follows classical trajectory
A probability of collision of several RWP is given by∫

d4x
∏
in,out

|wave functionin(x− xin)|2|wave functionout(x− xin)|2

Our formalism generalizes for 4-D space the impact parameter which
naturally describes suppression of collision probability with not
overlaping RWPs
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Introduction
Our approach: QFT with relativistic wave packets

QFT + localized in space-time relativistic wave
packets in (source and detector)
Macroscopic Feynman diagram (source and detector
can be separated by thousands of km)
Neutrino is a virtual particle (NO hypothesis about its
4-momentum, 4-coordinate, etc)
Neutrino ”oscillations” are not mutual transformations
να ↔ νβ , but just a result of interference of diagrams
with virtual massive neutrino νi as well as
”oscillations” of neutral kaons, D mesons and other
similar known systems!

- Grimus, Stockinger 1996 Phys. Rev. D
54 3414 (arXiv:hep-ph/9603430)
- Cardall 2000 Phys. Rev. D 61 073006
(arXiv:hep-ph/9909332)
- Beuthe 2003 Phys. Rept. 375 105
(arXiv:hep-ph/0109119)
- D. V. Naumov and V. A. Naumov, J.
Phys. G 37 (2010) 105014
- V. A. Naumov and D. V. Naumov,
Russian Phys. J. 53, 6/1 (2010) 5

Both diagrams are possible in the SM!
L = −

∑
i,α

g
√
2
VαīlαLγµνiLWµ

+ h.c

i

ℓ

ℓ

i

j

W W W W
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Introduction
Our approach: QFT with relativistic wave packets

An outlook on obtained results without equations
• Instead of postulating the neutrino wave function as done in QM
approach, we calculated neutrino wave function — found to be
(dispersing in space-time ) RWP.

• Number of events of a macroscopic process is factorized into
Φ× Pαβ × σ

• Standard QM formula for ν-oscillations — is an approximation of a
more general formula which depends
. time intervals of neutrino source and detector (relevant for modern
accelerator expeiments);

. type of reaction of neutrino production and detection, its kinematics;

. dimension of source and detector and distance between them.
• Our formula contains suppression of interference at distances larger
than coherence length as well for incoherent superposition of states.
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Shortly about wavepackets and S-matrix
Wave packet state in momentum and coordinate spaces, integrals of motion

Fock state:
|k, s〉 =√2Ek a†ks|0〉,

Ek =

√
k2 + m2

Singular normalization:
〈q, r|k, s〉 = (2π)32Ekδsrδ (k− q).

Conventional commutation relations
{aqr, aks} = {a†qr, a†ks} = 0,

{aqr, a†ks} = (2π)3δsrδ (k− q).

Wave packet

|p, s, x〉 =
∫ dkφ(k, p)ei(k−p)x

(2π)32Ek
|k, s〉,

φ(k, p) is Lorentz invariant, with a sharp peak
at k = p and a width σ
Non singular normalization:

〈q, r, y|p, s, x〉 = δsrei(qy−px)D(p, q; x− y),
with relativistic-invariant function
D(p, q; x) = ∫ dk

(2π)32Ek φ(k, p)φ
∗(k, q)eikx

φ(k, p) can be thought as Fourie of the “source
function“ j(x) in (i∂̂ − m)ψ(x) = j(x)

Both Fock and Wave packet states transform in the same way under the Lorentz transfor-
mations.
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Shortly about wavepackets and S-matrix
Wave packet state in momentum and coordinate spaces, integrals of motion..

The normalization of the WP state is finite:
〈p, s, x|p, s, x〉 = D(p, p; 0) = 2EpV(p). (1)

The quantities Ep and V(p) in (1) are, respectively, the mean energy and
effective spatial volume of the packet, defined by

Ep =
∫ dxψ(p, x)i∂0ψ∗(p, x)∫ dx|ψ(p, x)|2 =

1

V(p)
∫ dk|φ(k, p)|2

4(2π)3Ek , (2)

V(p) =
∫
dx|ψ(p, x)|2 =

∫ dk
(2π)3

|φ(k, p)|2
(2Ek)2 =

V(0)
Γp

, (3)

where Γp = Ep/m. So, both Ep and V(p), as well as the mean momentum p
defined by a relation similar to (2), are integrals of motion.
The mean position of the packet follows the classical trajectory:

x =
1

V(p)
∫
dxψ∗(p, x)xψ(p, x) = vpx0. (4)

Here vp = p/Ep is the mean group velocity of the packet, which coincides
with the most probable velocity ∇pEp = p/Ep.
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Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

assume a simple form for:

φ(k, p) = 2π2

σ2K1(m2/2σ2)
exp

(
−
EkEp − kp

2σ2

)
def
= φG(k, p), (5)

where K1(t) is the modified Bessel function of the 3rd kind of order 1. .. More details

then one can find:

ψ(p, x) = K1(ζm
2/2σ2)

ζK1(m2/2σ2)

def
= ψG(p, x), with ζ =

√
1−

4σ2

m2
[σ2x2 + i(px)]

which in the range σ2(x0?)2 � m2/σ2, σ2|x?|2 � m2/σ2 reads:

ψG(p, x) = exp
(imx0? − σ2x2?

)
= exp

{
i(px)− σ2

m2

[
(px)2 − m2x2]}. (6)

|ψG(p, x)| is invariant under the transformations
{x0 7−→ x0 + τ, x 7−→ x+ vpτ}.
.. More details
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Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

S-matrix amplitude with wave-packets

Initial and final states read
|i〉 = |p1, x1, s1 . . .pN, xN, sN〉, |f〉 = |k1, y1, r1 . . .kn, yn, rn〉

Dimensionless amplitude

A =
〈f|S|i〉√
〈i|i〉√〈f|f〉

Microscopic probability
P(pi, xi, si; kf, yf, rf) ≡ |A|2

Macroscopically averaged probability or number of events

dN =
∑
si,rf

∏
i

dpidxi
(2π)3

∏
f

dpfdyf
(2π)3

P(pi, xi, si; kf, yf, rf)ρ(pi, xi, si; kf, yf, rf)

with ρ being the particles density distribution
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

An example. The cross-section
Collision of two wavepackets with impact vector b = x2 − x1 and
n = v12/|v12|
Microscopic probability reads as ratio of two cross-sections:

P(b,n) = dσS12 e
−π|b×n|2/S12 ,

with S12 = S1 + S2 and Si = π/2σ2
i and σ is the usual cross-section with

plane waves

S1 S2

bT

bT
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

An example. The cross-section. Macroscopic averaging.

Introduce notation bT = b× n
Average over bT assuming the flux does not depend on it:

dN = 〈P(b,n)〉 =
∫
dbTΦ dσS12 e

−πb2T/S12 = Φdσ.
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Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

Evolution of wave packet

A numerical example: σ2/m2 = 10−10, γ = 105
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Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Shortly about wavepackets and S-matrix
Relativistic Gaussian packets (RGP).

Dispersion
..

Dispersion of wave-packet lead to a spherical like wave at large times relative to
”dispersion time” m/σ2

The wave packet appears as a stable configuration over large times if it is
ultra-relativistic

Particle σmax, eV Γ/σmax dmin? , cm
µ± 1.78× 10−1 1.68× 10−9 1.72× 10−4

τ± 2.01× 103 1.13× 10−6 1.53× 10−8

π± 1.88 1.35× 10−8 1.63× 10−5

π0 3.25× 104 2.41× 10−4 0.94× 10−9

K± 5.12 1.04× 10−8 5.99× 10−6

K0S 6.05× 101 1.22× 10−7 5.07× 10−7

K0L 2.53 5.08× 10−9 1.21× 10−5

D± 1.09× 103 5.82× 10−7 2.82× 10−8

D0 1.73× 103 9.28× 10−7 1.77× 10−8

D±s 1.61× 103 8.18× 10−7 1.91× 10−8

B± 1.46× 103 2.76× 10−7 2.11× 10−8

B0 1.51× 103 2.86× 10−7 2.03× 10−8

B0s 1.55× 103 2.89× 10−7 1.98× 10−8

n 2.64× 10−5 2.81× 10−14 1.16
Λ 5.28× 101 4.74× 10−7 5.81× 10−7

Λ±c 2.74× 103 1.87× 10−6 1.12× 10−8
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Neutrino oscillations in our approach
Formulation of the problem

Calculation of macroscopic diagram with a block Xs of
the ”source” and a block Xd of the ”detector”. Theblocks Xs and Xd are separated by macroscopically bigspace-time interval.
The source emits neutrino with a time interval τs:

τs → ∞ corresponds to stationary source (Sun,
reactor, atmosphere, ...)
τs ∼ µs, ns— accelerator neutrino (T2K, Nova,
OPERA, MINOS, K2K)

The detector detects neutrino during a time interval τd:

τd � τs corresponds to stationary source (Sun,
reactor, atmosphere, ...)
τd & τs — accelerator neutrino (T2K, Nova,
OPERA, MINOS, K2K)

All external particles (incoming or outgoing) are
relativistic wave packets
Virtual neutrino is described by causial propagator

Xd

Xs}

}

Is

i

Fs

Id Fd

}

}
Feynman rules: e−ipa(xa−x)ψa (pa, xa − x)

e+ipb(xb−x)ψ∗
b (pb, xb − x),

where ψκ (pκ , x) (κ = a, b) wave
packets for every particle. Internal
lines and loops remain unchanged.
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Neutrino oscillations in our approach
Scheme of calculation of macroscopic amplitude

Normalized amplitude is given by 4th order in perturbation theory in EW
coupling constand g (strong and electromagnetic interactions are taken into
account exactly — without perturbations!):

Aβα= 〈out|S|in〉 (〈in|in〉〈out|out〉)−1/2

=
1

N

(
−ig
2
√
2

)4

〈Fs⊕Fd|T
∫
dxdx′dydy′ : j`(x)W(x) : : jq(x′)W†(x′) :

× : j†`(y)W†(y) : : j†q(y′)W(y′) : Sh|Is⊕Id〉.
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Neutrino oscillations in our approach
Scheme of calculation of macroscopic amplitude

The hadronic parts of the amplitude can be factorized into a product of source
and detector subblocks
The ∫ dq in the neutrino propagator can be taking with help of Grimus-Stockinger
(GS) theorem giving rise to ∝ e

−iq0T+i
√
q20−m2j L

L with T = X0d − X0s , L = Xd − Xs
The remaining integration over ∫ dq0 can be taken with help of the saddle-pointapproximation
Assuming mj = 0 in the matrix elements (not in the exponentials!) the total
amplitude can be factorized into:

.. More details

Aβα =
D|Vs(pν)Vd(pν)|MsM∗

d
i(2π)3/2NL

∑
j
V∗αjVβj e−Ωj(T,L)−iΘj . (7)

where
the matrix elements:{ Ms corresponds to reaction Is → F′s + `+α + ν,

Md corresponds to reaction ν + Id → F′d + `−β .

the phase
Ωj(T, L) = i(pjX) +

(
2D̃2
j /E2ν

) [
(pjX)2 − m2

j X2
]
, X = Xd − Xs.

gauss dispersion of the neutrino energy D̃ is a function of all σ
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Neutrino oscillations in our approach
Neutrino wave packet

Given the factorized amplitude it turnes out that we calculated the amplitude
of neutrino propagation (which coincides with its wave-function up to a
factor √2Eν) of the outgoing neutrino ψ∗

j = e−Ωj with the explicitly
invariant complex phase Ωj(T, L) :

Ωj(T, L) = i(pjX) +
(
2D̃2

j /E2ν
) [

(pjX)2 −m2
j X2

]
, X = Xd − Xs. (8)

the ν WP is of CRGP form with the “width“
Σj =

√
2D̃j/Γj (Γj = Eν/mj).

Since Σj is a complex-valued function, the νWPs spreads with increase
of L = |X|. The spread effect can be important only at “cosmological”
distances. Here we limit ourselves to the “terrestrial” conditions
The relative energy-momentum uncertainty of the νWP is
δEj/Ej ∼ δPj/Pj ∼ D/Eν ≪ 1. The mean position of the νWPs evolves
along the “classical trajectory” L = vjT

.. More details
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Neutrino oscillations in our approach
Microscopic probability.

Recall the dimensionless amplitude

Aβα =
D|Vs(pν)Vd(pν)|MsM∗

d
i(2π)3/2NL

∑
j
V∗αjVβj e−Ωj(T,L)−iΘ. (9)

yielding the microscopic probability:

|Aβα|2 =
(2π)4δs(pν − qs)Vs|Ms|2∏

κ∈S 2EκVκ
(2π)4δd(pν + qd)Vd|Md|2∏

κ∈D 2EκVκ

× D2

(2π)3L2
∣∣∣∑
j
V∗αjVβj e−Ωj(T,L)

∣∣∣2. (10)

with
δs,d - “smeared“ δ function
Vs,d - 4-D overlap volume:

Vs,d =
∫
dx

∏
κ∈S,D

|ψκ (pκ , xκ − x)|2 =
π2

4
|<s,d|−1/2 exp (−2Ss,d). (11)
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Neutrino oscillations in our approach
Macroscopic averaging.

The microscopic probability depends on all individual mean coordinates of
the wave packets, it should be averaged over ensembles in the source and
detector to get the macroscopic probability or the number of events.
We assume

particles distribution functions independent on time within time
intervals τs = x02 − x01 and τd = y02 − y01 (could be astronomically large):

fa(pa, sa; x) = θ
(x0 − x01) θ (x02 − x0) fa(pa, sa;x) for a∈Is,

fa(pa, sa; y) = θ
(y0 − y01) θ (y02 − y0) fa(pa, sa; y) for a∈Id.

source and detectors have finite 3D volumes VS ,VD
Then:

〈〈|Aβα|2〉〉 ≡ dNαβ =

∫ ∏
κ∈Is,Id,Fs,Fd

dxκdpκfκ(pκ , sκ , xκ)
(2π)32EκVκ 〈|Aβα|2〉

=
τd
VDVS

∫
dx

∫
dy

∫
dΦν

∫
dσνDPαβ(Eν , |y− x|).
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Neutrino oscillations in our approach
Macroscopic averaging.

〈〈|Aβα|2〉〉 ≡ dNαβ =

∫ ∏
κ∈Is,Id,Fs,Fd

dxκdpκfκ(pκ , sκ , xκ)
(2π)32EκVκ 〈|Aβα|2〉

=
τd
VDVS

∫
dx

∫
dy

∫
dΦν

∫
dσνDPαβ(Eν , |y− x|).

where
flux density of neutrinos in D, produced through the processes
Is → F′s`+αν in S reads: dx

VS
∫ dΦν

dEν

the differential cross section of the neutrino scattering off the detector
as a whole.

1

VD
∫
dydσνD

.. More details
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Neutrino oscillations in our approach
Quantum mechanical formula

. Main result of our work is the most general formula for ”oscillation
probability”:

Pαβ(Eν , L) =
∑
ij
V∗αiVαjVβiV∗βjSij exp

(
i2πLLij − A 2

ij

)
. (12)

• This probability coincides with QM formula if Sij = 1 and Aij = 0.
Violation of these conditions limits region of applicability of standard
formula. One needs to satisfy two conflicting requirements on neutrino
energy dispersion δEν = D

coherence condition at production (could be violated):

δEν � πn

2Lij

destruction of coherence (will be violated at large distances):

δEν � Eν Lij
2πL
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Neutrino oscillations in our approach
Quantum mechanical formula

The Sij is a quite complicated object:

Sij = exp
(
−B2

ij
)

4τdD

2∑
l,l′=1

(−1)l+l
′+1Ierf

[
2D

(
x0l − y0l′ +

L
vij

)
− iBij

]
, (13)

Aij = (vj − vi)DL = 2πDL
EνLij , Bij =

∆Eji
4D

=
πn

2DLij , (14)

ϕij =
2πL
Lij , Lij = 4πEν

∆m2
ij
,

1

vij =
1

2

(
1

vi +
1

vj
)
,

∆m2
ij = m2

i −m2
j , ∆Eij = Ei − Ej,

Ierf(z) =
∫ z

0

dz′erf(z′) + 1√
π

= z erf(z) + 1√
π
e−z2 ,

which depends on:
ν energy-momentum uncertainty D, its mean energy Eν , masses mi,mj,
correction to energy and momentum n

time intervals of the source τs and the detector τd
length between the source and the detector L and time difference
between two time windows in the source and the detector T. There is no
reason apriori that L ≈ T, these are two independent parameters



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Neutrino oscillations in our approach
Asymptotics of a stationary source

In the asymptotic regime t = τsD → ∞ (valid for atmosperic, solar, reactor ν):
S(t, t′, b) ∼ exp(−b2)

the “probability“ (12) takes on the form already known from the literature,1

Pαβ(Eν , L) =
∑
ij
V∗αiVαjVβiV∗βj exp

(
i2πLLij

− A 2
ij − B2

ij

)
,

=
∑
ij
V∗αiVαjVβiV∗βj exp

i2πLLij −
(
2πDL
EνLij

)2

−
(

πn

2DLij

)2


=
∑
ij
V∗αiVαjVβiV∗βj exp

i2πLLij −
(
L
Lcohij

)2

−
(

1

DLintij

)2


with
“coherence length“ Lcohij = 1

∆vijD (∆vij = |vj − vi|),

“interference length“ Lintij = 1
4∆Eij =

2Lij
πn
.

1See. e.g., C. Giunti C and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford
University Press Inc., New York, 2007); M. Beuthe, Oscillations of neutrinos and mesons in quantum
field theory, Phys. Rept. 375 (2003) 105 [arXiv:hep-ph/0109119]; M. Beuthe, Towards a unique
formula for neutrino oscillations in vacuum, Phys. Rev. D 66 (2002) 013003 [arXiv:hep-ph/0202068].
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Neutrino oscillations in our approach
Asymptotics of a stationary source

• The factors exp
(
−A 2

ij
)
(with i6=j) suppress the interference terms at the distances

exceeding the “coherence length”

Lcohij =
1

∆vijD
� |Lij| (∆vij = |vj − vi|),

when the νWPs ψ∗
i and ψ∗

j are strongly separated in space and do not interfere
anymore. Clearly Lcohij → ∞ in the plane-wave limit.
• The suppression factors exp

(
−B2

ij
)
(i6=j) work in the opposite situation, when the

external packets in S or D (or in both S and D) are strongly delocalized
The gross dimension of the the neutrino production and absorption regions in S and D
is of the order of 1/D. The interference terms vanish if this scale is large compared to
the “interference length”

Lintij =
1

4∆Eij
=

2Lij
πn

.

In other words, the QFT approach predicts vanishing of neutrino oscillations in the
plane-wave limit. In this limit, the flavor transition probability does not depend on L,
Eν , and neutrino masses mi and becomes

PPWLαβ =
∑
i

|Vαi|2|Vβi|2 ≤ 1.

Thereby, a nontrivial interference of the diagrams with the intermediate neutrinos of
different masses is only possible if D 6= 0.
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Asynchronized and synchronized measurements

Current accelerator experiments detect neutrinos within tiny time windows:
T2K OPERA MINOS MiniBooNe

Nova SciBooNe
τs 50ns 10.5µs 10µs 4ns
τd 500ns 20µs 100µs #ns

Our formula predicts vanishing of the number of detected events if the time
windows are not synchronized.
Let us consider further the
case of “synchronized” mea-
surements, in which
x01,2 = ∓τs

2
, y01,2 = L∓ τd

2
.

τ  /2s−τ  /2s 0 x 0

L+τ  /2dL−τ  /2d L y 0

≃T   L
−

− − −

Thus the factor Sij can be expressed through a real-valued function S(t, t′, b)
of three dimensionless variables:

Sij = S (Dτs,Dτd,Bij),
2t′S(t, t′, b) = exp (−b2)Re [Ierf (t+ t′ + ib)− Ierf (t− t′ + ib)].



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
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Asynchronized and synchronized measurements

The diagonal decoherence function 0 ≤ Sii = S (Dτs,Dτd, 0) ≤ 1
suppresses the total event rate
The non-diagonal decoherence functions 0 ≤ Sij = S (Dτs,Dτd,Bij) ≤ 1
[i 6= j] suppress the interference (“oscillations“)
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The diagonal decoherence function

S(t, t, 0) → 0 for τs � τν ∼ 1/D. This is natural to obtain zero events measuring
much shorter times than the neutrino wave packet time width
S(t, t, 0) → 1 for τs � τν ∼ 1/D. No suppression is exected for measurement
time intervals much longer than the neutrino wave packet time width

Note however that the effect of finite the neutrino wave packet time width
τν persists up to τs/τν ∼ 10− 100. This provides a hint to measure neutrino
wave packet time width!
Another way to measure τν is measure the event rate as a function of τd atfixed τs

.. The details
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Nondiagonal decoherence function
The decoherence function S(t, t′, b) at b 6= 0 is much more involved.

At very large t, the function S(t, t, b) becomes nearly independent on t, slowly
approaching the asymptotic behavior S(t, t, b) ∼ exp(−b2) (t, t′ → ∞).
.. The details
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Nondiagonal decoherence function
At finite τs, τd the suppression is smaller than the asymptotic limit
limt→∞ S(t, t, b) ∼ exp(−b2). Why?
The reason is that a measurement at finite time intervals introduces an
additional uncertainty into energy-momentum thus making the coherence of
states more probable

.. The details
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Where one can observe a difference between QM and QFT approaches?
At accelerators one can expect:

decrease in number of events in near detector due to rather small time
intervals τs, τdmodification of ”oscillation” signal in far detector
However, taking into account of found corrections might get ∆m2, sin2 2θ
right

Intense (Mega-Curie) sources of (anti)neutrino with narrow energy lines
δEν � Eν mostl likely will be incoherent according to QFT and coherent
in QM theory.
Cosmological neutrinos are incoherent in QFT based approach
Light and Heavy (but still ultra-relativistic) neutrinos will not show an
”oscillotary” behaviour as they produced inchorently in QFT while they
will ”oscillate” in QM theory
Our approach gives a completely different picture about sterile
neutrinos compared to QM
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Sterile neutrinos

Sterile neutrino — is a popular explanation of experimental ”anomalies”
(new degree of freedom — an additional ∆m2)

LSND anomaly
MiniBooNE anomaly
reactor anomaly

. Basic question: What it is «sterile neutrino»?

. Traditional answer: A state of neutrino which does not interact but a
state into which active=interacting neutrinos could ”oscillate”

. However the effect of ”oscillations” is NOT due to mutual
transformation of neutrinos into each other, rather it is a result of
interference of diagrams with interacting neutrinos.

Could sterile neutrinos exist in QFT?
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In SM there are ”sterile” states — right neutrinos νR. However they are
sterile until neutrino is considered massless. Non zero neutrino mass means
that νL, νR interact with Higgs field. There are two scenarios:
1 Number of fields νR equals three: diagonalization λ``′ ν̄`Lφν`′R + h.c.
gives three massive fields of neutrinos. No sterile neutrinos.

2 Number of fields νR is larger than three. Then one has to diagonalize the
most general mass lagrangian:

Lm = −1

2

(
νL, (νR)c

)( mL mD
mD mR

)(
(νL)c

νR

)
+ h.c.

where ν fL = (νeL, νµL, ντL)T, (νR)c = ((νeR)c, (νµR)c, (ντR)c, . . . )T .

Lm is diagonal in terms of new fields νmL ,NL:(
νfL

(νR)c

)
=

( V M
K U

)(
νmL
NL

)
The fields νmL ,NL interact with W, Z— not really sterile!
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The unitarity of mixing matrix gives:
VV† +MM† = 1, KK† + UU† = 1, VK† +MU† = 0,

however VV† 6= 1,UU† 6= 1!.
Existence of additional neutrino fields lead to a statement that PMNS mixing
matrix could not non unitary!

Interaction with W:
LSM/EWcc = − g√

2

∑
α=e,µ,τ

`αL γµν
α
L Wµ + h.c.→

− g√
2

∑
α=e,µ,τ

3∑
i=1

Vαi`αL γµνmiLWµ − g√
2

∑
α=e,µ,τ

3∑
i=1

Mαi`αL γµNiLWµ + h.c.

Interaction with Z non diagonal:

LSM/EWnc = − g
cos θW

∑
`=e,µ,τ

ν̄`LγµνLZµ →

− g
cos θW

(
V†Vν̄mL γµνmL +M†MN̄LγµNL + V†Mν̄mL γµNL +M†VN̄LγµνmL

)
Zµ
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There are at least two data sets which puts limits:
LEP from decays Z→ invisible limits M†M� 1.
Tritium decays also limits me = ∑3

i=1 |Vei|2mi +
∑
k |Mek|2mk

One can think about possible scenaries:
If mN � mν , then no oscillations with ∆m2ster could be expected because
of coherence suppression. The effect can be seen in mixing matrix
non-unitarity and as a result fewer number of events.
If mN ' mν , the interference is possible while the contribution from
∆m2ster will be suppressed due to smallness of matrix M. It is hard to the
interference (possible only at comparable neutrino masses) + small
contributon to Z boson width + small contribution to mass me + small
neutrino mass (cosmology) simultaneosly. This makes our approach
very different from QM (thus our theory is falsifiable)

In a consistent QFT based theory of neutrino oscillations the expected effect
of ”sterile” neutrino is significantly different from QM approach.
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Within QFT and relativistic wave functions of external states we considered a
macroscopic process with lepton number violation. As a result one can find

• calculated neutrino wave function - which turned out to be (in general)
a spreading with time-distance wave packet.

• the number of events of macroscopic process is factorized into a product
Φ× Pαβ × σ

• The standard QM ν-oscillation formula is an approximation of the more
general formula which depends essentialy on
. the source “machine ” and detector exposure time;
. reaction types in the neutrino production and absorption regions and
phase-space domains of these reactions;

. dimensions of the source and detector and distance between them.
• The QFT formula as a by product explains a lost of coherence for
charged leptons

• We argue that the neutrino wave function can be measured in
experiments with short beam pulses (T2K, OPERA, MINOS, MiniBooNe,
SciBooNe, Nova, ...)
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Relativistic Gaussian packet in momentum space

We consider a simple model of the state – relativistic Gaussian packet (RGP)
with:

φ(k, p) = 2π2

σ2K1(m2/2σ2)
exp

(
−EkEp − kp

2σ2

)
def
= φG(k, p), (15)

where K1(t) is the modified Bessel function of the 3rd kind of order 1. In
what follows we assume

σ2 � m2 (16)
Then the function (15) can be rewritten as an asymptotic expansion:

φG(k, p) = 2π3/2

σ2

m
σ
exp

[
(k− p)2
4σ2

] [
1 +

3σ2

4m2
+O

(
σ4

m4

)]
. (17)

The nonrelativistic limit of the function (17) coincides, up to a normalization
factor, with the usual (noncovariant) Gaussian distribution:

ϕG(k− p) ∝ exp
[
− (k− p)2

4σ2

]
.

But it is not the case at relativistic and especially ultrarelativistic momenta.
.. Return
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Example: in the vicinity of the maximum k = p

φG(k, p) ≈ 2π3/2

σ2

m
σ
exp

[
− (k− p)2

4σ2Γ 2p

]
(k ∼ p).

We see that in this case the relativistic effect consists in a “renormalization”
of the WP width (σ → σΓp). This renormalization is very essential for the
neutrino production and detection processes involving relativistic particles.
.. Return
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Relativistic Gaussian packet in coordinate space

Function ψG(p, x).

x  /m2 0

| |
G

x  /m2 3

A 3D plot of |ψG(0, x?)| as a function
of σ2x0?/m and σ2x3?/m (assumingthat x? = (0, 0, x3?)). The calculationsare done for σ/m = 0.1.

ψ(p, x) = K1(ζm
2/2σ2)

ζK1(m2/2σ2)

def
= ψG(p, x),

where we have defined the dimensionless
Lorentz-invariant complex variable

ζ =

√
1−

4σ2

m2
[σ2x2 + i(px)];

|ζ|4 =

[
1−

4σ4x2
m2

]2
+

16σ4(px)2
m4

,

ϕ = −
1

2
arcsin

[
4σ2(px)
m2|ζ|2

]
.

It can be proved that for any p and x
|ζ| ≥ 1 and |ϕ| < π/2.

.. Return
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An analysis of the asymptotic expansion of ln [ψG(0, x?)] in powers of σ2/(m2ζ)
provides the following (necessary and sufficient) conditions of the nondiffluent
behavior:

σ2(x0?)2 � m2/σ2, σ2|x?|2 � m2/σ2. (18a)
They can be rewritten in the equivalent but explicitly Lorentz-invariant form:

(px)2 � m4/σ4, (px)2 − m2x2 � m4/σ4. (18b)
Under these conditions ψG(p, x) reduces to the simple form:

ψG(p, x) = exp
(imx0? − σ2x2?

)
= exp

{
i(px)− σ2

m2

[
(px)2 − m2x2]}. (19)

Some properties of CRGP:
1. The mean coordinate of the packet follows the classical trajectory (CT) x = vpx0.
2. |ψG(p, x)| = 1 along the CT and |ψG(p, x)| < 1 with any deviation from it.
3. |ψG(p, x)| is invariant under the transformations {x0 7−→ x0 + τ, x 7−→ x+ vpτ}.
4. In the nonrelativistic limit, the wave function (19) takes the form:

ψG(p, x) ≈ exp
[
im (x0 − vpx)− σ2 |x− vpx0|2

]
.

.. Return
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Feynman rules and overlap integrals.

The additional factors (1) provide the following two common multipliers in the
integrand of the scattering amplitude [we will call these the overlap integrals]:

Vs(q) =
∫
dxe+iqx

[∏
a∈Is
e−ipaxaψa (pa, xa − x)

][ ∏
b∈Fs
eipbxbψ∗

b (pb, xb − x)
]
,

Vd(q) =
∫
dxe−iqx

[ ∏
a∈Id
e−ipaxaψa (pa, xa − x)

][ ∏
b∈Fd
eipbxbψ∗

b (pb, xb − x)
]
.
(20)

The function Vs (Vd) characterizes the 4D overlap of the “in” and “out” wave-packet
states in the source (detector) vertex .. Return

In the plane-wave limit (σκ → 0, ∀κ)
Vs(q) → (2π)

4
δ (q− qs) and Vd(q) → (2π)

4
δ (q+ qd),

where qs and qd are the 4-momentum transfers defined by
qs =

∑
a∈Is
pa −

∑
b∈Fs
pb and qd =

∑
a∈Id
pa −

∑
b∈Fd

pb.

The δ functions provide the energy-momentum conservation in the vertices s and d (that
is in the “subprocesses” Is → Fs + ν∗

i and ν∗
i + Id → Fd) and, as a result, – in the whole

process:
Is⊕Id → Fs⊕Fd :

∑
a∈Is⊕Id

pa =
∑

b∈Fs⊕Fd
pb.

Information about the space-time coordinates of the interacting packets is completely lost.
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In the general case of nonzero spreads σκ , we may expect no more than an
approximate conservation of energy and momentum and lack of any singularities.
To quantify this expectation, we apply the CRGP model.

Tµνκ = σ2κ (uµκuνκ − gµν), [uκ = pκ/mκ = Γκ(1, vκ)]
⇓

Vs,d(q) =
∫
dx exp

[
i
(
± qx− qs,dx

)
−
∑

κ∈S,D
Tµν
κ (xκ − x)µ (xκ − x)ν

]
,

where S = Is⊕Fs and D = Id⊕Fd. It is useful to define also the tensors
<µν
s =

∑
κ∈S
Tµν
κ and <µν

d =
∑
κ∈D
Tµν
κ .

A crucial property:
Tµνκ xµxν = σ2

κ
[
(uκx)2 − x2] = σ2

κx2? ≥ 0 =⇒ <µν
s,d xµxν > 0. �

Consequently, there exist the positive-definite tensors <̃µν
s and <̃µν

d such that
<̃s,d = ||<̃µν

s,d || = g<−1
s,d g, <s,d = ||<µν

s,d ||.

The explicit form and properties of these tensors and relevant convolutions are
established (studied in detail for the most important reactions
1 → 2, 1 → 3, 2 → 2). .. Return
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The overlap integrals In CRGP are the 4D Gaussian integrals in Minkowski space.

Vs,d(q) = (2π)4δ̃s,d
(
q∓qs,d

)
exp

[
−Ss,d ± i

(
q∓qs,d

)
·Xs,d

]
,

δ̃s,d(K) = (4π)−2|<s,d|−1/2 exp
(
−
1

4
<̃µν
s,dKµKν

)
,

Ss,d =
∑
κ,κ′

(
δκκ′Tµν

κ − Tµκµ′ <̃µ′ν′

s,d Tνκ′ν′

)
xκµxκ′ν ,

Xµs,d = <̃µν
s,d
∑
κ
Tλκνxκλ.

Physical meaning of δ̃s,d, Ss,d, and Xs,d.
• From the integral representation δ̃s,d(K) =

∫ dx
(2π)4

exp
(
−<µν

s,d xµxν + iKx
)
it

follows that δ̃s,d(K) → δ(K) in the plane-wave limit [σκ → 0, ∀κ ⇒ <̃µν
s,d → 0].

=⇒ just the factors δ̃s (q− qs) and δ̃d (q+ qd) are responsible for theapproximate energy–momentum conservation (with the accuracy governed by
the momentum spreads of the interacting packets) in the neutrino production and
detection points.

.. Return
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• The functions exp (−Ss) and exp (−Sd) are the geometric suppression factorsconditioned by a partial overlap of the in and out WPs in the space-time regions
of their interaction in the source and detector.

This can be seen after converting Ss,d to the form2

Ss,d =
∑
κ
Tµν
κ
(xκ − Xs,d

)
µ

(xκ − Xs,d
)
ν

(21)

and taking into account that both Ss,d and Xs,d are invariants under the group ofuniform rectilinear motions (here, τκ are arbitrary real time parameters){x0κ 7−→ x̃0κ = x0κ + τκ , xκ 7−→ x̃κ = xκ + vκτκ
}

Due to this symmetry, (21) can be rewritten as
Ss,d =

∑
κ
σ2
κ

[(
Γ 2
κ − 1

) (b0κ)2 + b2κ
]
=
∑
κ
σ2κ |b?κ |2,

b0κ=
(
x0κ − X0s,d

)
− |vκ |−1nκ ·

(xκ − Xs,d
)
,

bκ=
(xκ − Xs,d

)
−
[nκ ·

(xκ − Xs,d
)] nκ ,

[
nκ =

{ vκ/|vκ |, for vκ 6= 0,

0, for vκ = 0.

]
The 4-vector bκ = (b0κ , bκ) is a relativistic analog of the usual impact parameter, so itis natural to call it the impact vector. [Note that |bκ | =

∣∣nκ ×
(xκ − Xs,d

)∣∣ for
vκ 6= 0.]
The 4-vectors Xs,d can be called, accordingly, the impact points. .. Return
2In this derivation we have used the translation invariance of the functions Ss,d.
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The suppression of the overlap integral caused by the factors exp(−Ss) and exp(−Sd)can be small only if all the world tubes in the source/detector inter-cross each other.

X

xa

xb

xc

~

~

~

ti
m
e

spa
ce

Artistic view of the “classical world tubes” of interacting wave packets. The tubes reproduce
the space-time cylindrical volumes swept by the classically moving spheroids which represent
the wave-packet patterns. The impact point X is defined by the velocities vκ of the packets
and the space-time points x̃κ = x̃κ(τκ) arbitrarily chosen on the axes of the tubes. The axes
do not necessarily cross the point X.

The interacting packets behave, bluntly speaking, like colliding interpenetrative
cloudlets. .. Return .
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Calculating the amplitude

1. Quark-lepton blocks. We use the Standard Model (SM) phenomenologically
extended by inclusion of a neutrino mass term. The quark-lepton blocks are described
by the Lagrangian

LW(x) = −
g

2
√
2

[
j`(x)W(x) + jq(x)W(x) + H.c.

]
,

where g is the SU(2) coupling constant, j` and jq are the weak charged currents:
jµ` (x) =

∑
αi
V∗αi ν i(x)Oµ`α(x), jµq (x) =

∑
qq′
V′∗
qq′ q(x)Oµq′(x), [Oµ = γµ(1− γ5)] .

Here Vαi (α = e, µ, τ ; i = 1, 2, 3) and V′qq′ (q = u, c, t; q′ = d, s, b) are the elements of
the neutrino and quark mixing matrices (V and V′, respectively).
The normalized amplitude is given by the 4th order of the perturbation theory in g:

Aβα= 〈out|S|in〉 (〈in|in〉〈out|out〉)−1/2

=
1

N

(
−ig
2
√
2

)4

〈Fs⊕Fd|T
∫
dxdx′dydy′ : j`(x)W(x) : : jq(x′)W†(x′) :

× : j†`(y)W†(y) : : j†q(y′)W(y′) : Sh|Is⊕Id〉. (22)
The normalization factor N in the CRGP approximation is given by

N 2 = 〈in|in〉〈out|out〉 =
∏

κ∈Is⊕Id⊕Fs⊕Fd
2EκVκ(pκ).

.. Return
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2. Hadronic blocks. The strong and (possibly) electromagnetic interactions
responsible for nonperturbative processes of fragmentation and hadronization are
described by the hadronic (QCD) interaction Lagrangian Lh(x) and the correspondingpart of the full S-matrix is

Sh = exp
[
i
∫
dzLh(z)

]
.

The following factorization theorem can be proved
〈F′s⊕F′d|T

[
: jµq (x) : Sh : j†νq (y) :

]
|Is⊕Id〉 = J µ

s (pS)J ν†
d (pD)

×
[∏
a∈Is
e−ipaxaψa(pa, xa − x)

][ ∏
b∈F′s
eipbxbψ∗

b (pb, xb − x)
]

×
[ ∏
a∈Id
e−ipaxaψa(pa, xa − y)

][ ∏
b∈F′d
eipbxbψ∗

b (pb, xb − y)
]
.

Here Js(pS) and Jd(pD) are the c-number hadronic currents in which the stronginteractions are taken into account nonperturbatively, and pS and pD denote the sets ofthe momentum and spin variables of the hadronic states.

The proof is based on the assumed narrowness of the WPs in the momentum space, macro-
scopic remoteness of the interaction regions in the source and detector vertices, and the
consideration of translation invariance.

The explicit form of the hadronic currents Js and Jd is not needed for our purposes.
.. Return
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Now, by applying Wick’s theorem, factorization theorem, and the known properties of
the leptonic WPs, the amplitude (22) can be rewritten in the following way:

Aβα =
g4

64N
∑
j
VβjJ ν†

d u(pβ)Oν′Gjν
′µ′

νµ ({pκ , xκ})Oµ′v(pα)J µ
s V∗αj, (23)

Gjν
′µ′

νµ ({pκ , xκ}) =
∫ dq

(2π)4
Vd(q)∆ν′

ν (q− pβ)∆j(q)∆µ′
µ (q+ pα)Vs(q). (24)

Here Vs(q) and Vd(q) are the overlap integrals; ∆j and ∆ν
µ are the propagators of,

respectively, the massive neutrino νj and W boson.3
∆j(q) = i (q̂− mj + i0)−1

.

3. Large-distance asymptotics. At large values of |Xs − Xd|, the integral (24) can beevaluated by means of the Grimus-Stockinger (GS) theorem.4
Let F(q) be a thrice continuously differentiable function such that F itself and its 1st and
2nd derivatives decrease not slowly than |q|−2 as |q| → ∞. Then in the asymptotic limit of
L = |L| → ∞,∫ dq

(2π)3
F(q)eiqL
s− q2 + i0 ∼

{
− 1

4πL F
(√s L/L) exp (i√sL)+ O

(
L−3/2

)
at s > 0,

O
(L−2

) at s < 0.

The integrand in (24) satisfies the formulated requirements.
.. Return3The explicit form of ∆µν is not used below. So ∆µν can be thought of as renormalized
propagator.
4W. Grimus and P. Stockinger, Real oscillations of virtual neutrinos, Phys. Rev. D 54 (1996) 3414

[arXiv:hep-ph/9603430].
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4. Integration in q0. The integral over q0, which remains after applying the GStheorem can be evaluated by the regular saddle-point method.
In the ultrarelativistic approximation (q0s ≈ −q0d � mj, j = 1, 2, 3) the stationary
saddle point q0 = Ej can be found as a series in powers of the small parameter
rj = m2

j /(2E2ν). We obtain
q0 ≡ Ej = Eν

[
1− nrj − mr2j +O

(
r3j
)]
,

|qj|q0=Ej ≡ Pj = Eν
[
1− (n+ 1)rj −

(
n+ m+

1

2

)
r2j +O

(
r3j
)]
,

Pi
Ej

≡ vj = 1− rj −
(
2n+

1

2

)
r2j +O

(
r3j
)
, E2j − P2j = m2

j ;

n =
Yl
Yl , m = n

(
3

2
+ 2n

)
+

1

R
∑

n=1,2,3

(
<̃0ns + <̃0n

d
)
ln,

Yµ = <̃µν
s qsν − <̃µν

d qdν , R =
(
<̃µν
s + <̃µν

d
)
lµlν ,

Eν =
Yl
R , l = (1, l), l = L

L , L = Xd − Xs. .. Return
The quantities Ej, Pj = Pjl and vj = vjl can naturally be treated as, respectively, the
effective energy, momentum and velocity of the virtual neutrino νj.

The ultrarelativistic approximation is, of course, reference-frame dependent. That is why
the obtained result is not explicitly Lorentz-invariant.
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In the limit of mj = 0 and assuming the exact energy-momentum conservation,
Ej = Pj = Eν = q0s = −q0d .

But, in the general case, the effective neutrino 4-momentum pj = (Ej, pj) is determined
by the mean momenta and momentum spreads of the external WPs involved in the
process.

Below, we’ll limit ourselves to the 1st order of the expansion in rj. However, the next-
order corrections are needed to define properly the range of applicability of the obtained
result.

Finally, by introducing the notation
Ωj(T, L) = i

(EjT− PjL)+ 2
(
D̃j/Pj

)2 (PjT− EjL)2,
Θ = Xsqs + Xdqd, L = |Xd − Xs|, T = X0d − X0s ,

D̃j = Dj

(
1 +

8irjE2νD2
j L

P3j

)−1/2

, Dj =
1 + nrj√

2R , .. Return

we arrive at the saddle-point estimate of the function (24):

Gjν
′µ′

νµ = ∆ν′
ν (pj − pβ)(p̂j + mj)∆µ′

µ (pj + pα)|Vd(pj)Vs(pj)|
D̃je−Ωj(T,L)−iΘ

i(2π)3/2L . (25)
This formula can be (and must be) somewhat simplified by putting rj = 0 everywhere
wherever it is not a factor multiplying L or T (whose values can be arbitrary large).
Then the 4-vector pj is replaced by the light-cone 4-vector pν = (Eν , pν) = Eν l.
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Excursus: Neutrino wave packet (νWP).
The complex phase Ωj(T, L) can be written in an explicitly invariant form:

Ωj(T, L) = i(pjX) +
(
2D̃2
j /E2ν

) [
(pjX)2 − m2

j X2
]
, X = Xd − Xs. (26)

Comparing the factor ψ∗
j = e−Ωj in (25) with the generic CRGP wave function (19),

we conclude that ψ∗
j can be treated as the (outgoing) νWPs in which the role of the

parameter σ is played by the function
Σj =

√
2D̃j/Γj, (Γj = Eν/mj).

Since Σj is a complex-valued function, the νWPs spreads with increase of L = |X|.
The spread effect can be important only at “cosmological” distances. Here we limit
ourselves to the “terrestrial” conditions, for which it is a fortiori possible to judge that

EjL�
(
ΓjEj/2Dj

)2
.

⇓
D̃j ' Dj ' 1/

√
2R ≡ D and Σj '

√
2D/Γj = 1/(Γj

√R).
The relative energy-momentum uncertainty of the νWP is
δEj/Ej ∼ δPj/Pj ∼ D/Eν ≪ 1. Of course, the mean position of the νWPs evolves along
the “classical trajectory” L = vjT, the quantum deviations from which, δL, are
suppressed by the factor

exp
{
−2D2

[
δL2/Γ 2

j + (lδL)2
]}
.

.. Return
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5. Source-detector factorization. Now, by applying the identity
P−p̂νP+ = P−u−(pν)u−(pν)P+,

where u−(pν) is the Dirac bispinor for the left-handed massless neutrino and
P± = 1

2
(1± γ5), we define the matrix elements

Ms = (g2/8) u−(pν)J µ
s ∆µ′

µ (pν + pα)Oµ′u(pα),
M∗
d = (g2/8) v(pβ)Oµ′∆µ′

µ (pν − pβ)J µ†
d u−(pν),

which describe the reactions with production and absorption of a real massless
neutrino ν: { Ms corresponds to reaction Is → F′s + `+α + ν,

Md corresponds to reaction ν + Id → F′d + `−β .

The final expression for the amplitude (23) is

Aβα =
D|Vs(pν)Vd(pν)|MsM∗

d
i(2π)3/2NL

∑
j
V∗αjVβj e−Ωj(T,L)−iΘ. (27)

• The form of eq. (27) suggests that it is common for essentially any class of
macrodiagrams, with exchange of virtual neutrinos between the source and detector,
until we do not specify the explicit form of the matrix elements Ms and Md.
• To obtain similar answer for the macrodiagrams with an exchange of virtual
antineutrinos, one has to replace (besides the matrix elements) V 7−→ V†. .. Return
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Microscopic probability.

It can be shown that
|Vs,d(pν)|2 = (2π)4δs,d(pν∓qs,d)Vs,d, (28)

where δs,d are the “smeared” δ functions (analogous to the functions δ̃s,d) and
Vs,d are the effective 4D overlap volumes of the external packets in the
source and detector;

δs,d(K) = (2π)−2|<s,d|−1/2 exp
(
−1

2
<̃µν
s,dKµKν

)
, (29)

Vs,d =
∫
dx

∏
κ∈S,D

|ψκ (pκ , xκ − x)|2 =
π2

4
|<s,d|−1/2 exp (−2Ss,d). (30)

⇓

|Aβα|2 =
(2π)4δs(pν − qs)Vs|Ms|2∏

κ∈S 2EκVκ
(2π)4δd(pν + qd)Vd|Md|2∏

κ∈D 2EκVκ

× D2

(2π)3L2
∣∣∣∑
j
V∗αjVβj e−Ωj(T,L)

∣∣∣2. (31)

This is the microscopic probability dependent on the mean momenta pκ , initial
coordinates xκ , masses mκ , and parameters σκ of all external wave packets
participated in the reaction.
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By using the explicit form of the functions δs,d and D, one can prove the
following approximate relation:

2
√
πDδs (pν − qs) δd (pν + qd) F(pν) =

∫
dE′νδs

(p′ν − qs
)
δd

(p′ν + qd
) F(p′ν),

(32)
where F(pν) is an arbitrary slowly varying function and p′ν = (E′ν , p′ν) = E′ν l.
The relation is valid with the same accuracy with which the amplitude (27)
itself has been deduced that is, with the accuracy of the saddle-point
method. With help of (32) the squared amplitude (31) transforms to

|Aβα|2 =

∫
dEν (2π)4δs(pν − qs)Vs|Ms|2∏

κ∈S 2EκVκ

(2π)4δd(pν + qd)Vd|Md|2∏
κ∈D 2EκVκ

× D

2
√
π(2π)3L2

∣∣∣∑
j
V∗αjVβj e−Ωj(T,L)

∣∣∣2. (33)

The probability (33) is the most general result of this work. However, it is
too general to be directly applied to the contemporary neutrino oscillation
experiments.
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To obtain the observable quantities, the probability must be
averaged/integrated over all the unmeasurable or unused variables of
incoming/outgoing WP states.
A thought experiment:
Assume that the statistical distributions of the incoming WPs a ∈ Is,d over the
mean momenta, spin projections, and space-time coordinates in the source
and detector “devices” can be described by the one-particle distribution
functions fa(pa, sa, xa). It is convenient to normalize each function fa to the
total number, Na(x0a), of the packets a at a time x0a :∑

sa

∫ dxadpa
(2π)3

fa(pa, sa, xa) = Na(x0a) (a ∈ Is,d).

For clarity purposes, we (re)define the terms “source” and “detector”:
S = supp{xa; a∈Is}

∏
a
fa(pa, sa, xa), D = supp{xa; a∈Id}

∏
a
fa(pa, sa, xa).

We’ll use the same terms and notation S and D also for the corresponding
devices. .. Return
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Innocent assumptions:
[1] S and D are finite and mutually disjoint within the space domain.
[2] Effective spatial dimensions of S and D are small compared to the mean distance between
them but very large compared to the effective dimensions (∼ σ−1

κ ) of all WPs in S and D.
[3] The experiment measures only the momenta of the secondaries in D and (due to [2]) the
background events caused by the secondaries falling into D from S can be neglected.

[4] The detection efficiency in D is 100%.
With all these assumptions, the macroscopically averaged probability reads

〈〈|Aβα|2〉〉 ≡ dNαβ =
∑
spins

∫ ∏
a∈Is

dxadpafa(pa, sa, xa)
(2π)32EaVa

∫ ∏
b∈Fs

dxbdpb
(2π)32EbVb

Vs

×
∫ ∏
a∈Id

dxadpafa(pa, sa, xa)
(2π)32EaVa

∫ ∏
b∈Fd

dxb[dpb]
(2π)32EbVb

Vd

×
∫
dEν(2π)4δs(pν − qs)|Ms|2(2π)4δd(pν + qd)|Md|2

×
D

2
√
π(2π)3L2

∣∣∣∑
j
V∗αjVβj e−Ωj(T,L)

∣∣∣2. (34)

.
∑
spins denotes the averaging/summation over the spin projections of the in/out states.

. Symbol [dpb] indicates that integration in variable pb is not performed, i.e.,
∫
[dpb] = dpb.

Clearly, 〈〈|Aβα|2〉〉 represents the total number, dNαβ , of the events recorded in D and consisted
of the secondaries b∈Fd having the mean momenta between pb and pb + dpb.



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Details on the probability of the macroscopic process
Macroscopic averaging...
Under additional assumptions, the unwieldy expression (34) can be simplified in a few steps.
Step 1: Multidimensional integration in WP positions.
Supposition 5: The distribution functions fa(pa, sa, xa), as well as the factors e−Ωj−Ω∗

i /L2 vary
at large (macroscopic) scales.

The integrand∏κ |ψκ (pκ , xκ − x)|2 in the integral representation of the overlap volumes (30) is
essentially different from zero only if the classical word lines of all packets κ pass through a small
(though not necessarily microscopic) vicinity of the integration variable.

Supposition 6: The edge effects can be neglected (a harmless extension of supposition [2]).
As a result, expression (34) is reduced to the following:

dNαβ =
∑
spins

∫
dx
∫
dy
∫
dPs

∫
dPd

∫
dEν

D
∣∣∣∑j V∗αjVβj e−Ωj(T,L)

∣∣∣2
16π7/2|y− x|2 , (35)

where T = y0 − x0, L = |y− x| and we have defined the differential forms

dPs=
∏
a∈Is

dpafa(pa, sa, x)
(2π)32Ea

∏
b∈Fs

dpb
(2π)32Eb

(2π)4δs(pν − qs)|Ms|2, (36a)

dPd=
∏
a∈Id

dpafa(pa, sa, y)
(2π)32Ea

∏
b∈Fd

[dpb]
(2π)32Eb

(2π)4δd(pν + qd)|Md|2. (36b)
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Step 2: Integration in time variables.
Supposition 7: During the experiment, the distribution functions fa in S and D vary
slowly enough with time so that they can be modelled by the “rectangular ledges”

fa(pa, sa; x) = θ
(x0 − x01

)
θ
(x02 − x0) fa(pa, sa; x) for a∈Is,

fa(pa, sa; y) = θ
(y0 − y01

)
θ
(y02 − y0) fa(pa, sa; y) for a∈Id. (37)

Supposition 8: The time intervals needed to switch on and switch off the source and
detector are negligibly small in comparison with periods of stationarity τs = x02 − x01
and τd = y02 − y01.

In case of detector, the step functions in (37) can be thought as the “hardware” or “soft-
ware” trigger conditions. The periods of stationarity τs and τd can be astronomically long,
as it is for the solar and atmospheric neutrino experiments (τs ≫ τd in these cases), or
very short, like in the experiments with short-pulsed accelerator beams (when usually
τs . τd).

Within the model (37), the only time-dependent factor in the integrand of (35) is
e−Ωj−Ω∗

i . So the problem is reduced to the (comparatively) simple integral∫ y02
y01
dy0

∫ x02
x01
dx0 e−Ωj(y0−x0,L)−Ω∗

i (y0−x0,L) =
√
π

2D
τd exp

(
iϕij − A 2

ij
)
Sij. (38)
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In this relation, we have adopted the following notation:

Sij =
exp

(
−B2

ij
)

4τdD

2∑
l,l′=1

(−1)l+l
′+1Ierf

[
2D

(
x0l − y0l′ +

L
vij

)
− iBij

]
, (39)

Aij = (vj − vi)DL = 2πDL
EνLij

, Bij =
∆Eji
4D

=
πn

2DLij
, (40)

ϕij =
2πL
Lij

, Lij = 4πEν
∆m2

ij
,

1

vij
=

1

2

(
1

vi
+

1

vj

)
,

∆m2
ij = m2

i − m2
j , ∆Eij = Ei − Ej,

Ierf(z) =
∫ z
0
dz′erf(z′) + 1

√
π

= z erf(z) + 1
√
π
e−z2 ,

For a more realistic description of the beam pulse experiments, the model (37) could be
readily extended by inclusion of a series of rectangular ledges followed by pauses during
which fa = 0.

Then substituting (38) into (35) we obtain:
dNαβ = τd

∑
spins

∫
dx
∫
dy
∫
dPs

∫
dPd

∫
dEν Pαβ(Eν , |y− x|)

4(2π)3|y− x|2 , (41a)

≡
τd
VDVS

∫
dx
∫
dy
∫
dΦν

∫
dσνDPαβ(Eν , |y− x|). (41b)

The differential forms dPs,d in (41a) are are given by eq. (36) after substitution
fa 7−→ fa.
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Explanation of the factors in eq. (41b).
. VS and VD are the spatial volumes of the source and detector,
respectively.
. The differential form dΦν is defined in such a way that the integral

dx
VS

∫ dΦν

dEν = dx
∑
spins∈ S

∫ dPsEν
2(2π)3|y− x|2 (42)

is the flux density of neutrinos in D, produced through the processes
Is → F′s`+αν in S.

More precisely, it is the number of neutrinos appearing per unit time and unit neutrino
energy in an elementary volume dx around the point x ∈ S, travelling within the solid
angle dΩν about the flow direction l = (y− x)/|y− x| and crossing a unit area, placed
around the point y ∈ D and normal to l.

.. Return



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Details on the probability of the macroscopic process
Macroscopic averaging.

. The differential form dσνD is defined in such a way that
1

VD
∫
dydσνD =

∑
spins∈ D

∫ dydPd
2Eν (43)

represents the differential cross section of the neutrino scattering off the
detector as a whole.

In the particular (and the most basically important) case of neutrino scattering in the re-
action νa→ F′d`−β , provided that the momentum distribution of the target scatterers a is
sufficiently narrow, the differential form dσνD becomes exactly the elementary differen-
tial cross section of this reaction multiplied by the total number of the particles a in D.

.. Return



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Details on the “probability of neutrino oscillations“
Diagonal decoherence function

Let us now return to the de-
coherence factor, limiting our-
selves to a consideration of
“synchronized” measurements,
in which
x01,2 = ∓τs

2
, y01,2 = L∓ τd

2
.

τ  /2s−τ  /2s 0 x 0

L+τ  /2dL−τ  /2d L y 0

≃T   L
−

− − −

With certain technical simplifications, the factor (39) can be expressed
through a real-valued function S(t, t′, b) of three dimensionless variables,
namely:

Sij = S (Dτs,Dτd,Bij),
2t′S(t, t′, b) = exp (−b2)Re [Ierf (t+ t′ + ib)− Ierf (t− t′ + ib)].

Diagonal decoherence function
S(t, t′, 0) = 1

2t′
[Ierf (t+ t′)− Ierf (t− t′)] ≡ S0(t, t′), (44)

This function corresponds to the noninterference (neutrino mass independent)
decoherence factors Sii. The following inequalities can be proved:

0 < S0(t, t′) < 1, S0(t, t′) < t/t′ for t′ ≥ t, S0(t+ δt, t) > erf(δt) for δt > 0.

.. Return
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The strong dependence of the common suppression factor S0(t, t′) on its arguments at
t . t′ provides a potential possibility of an experimental estimation of the function D
(or, rather, of its mean values within the phase spaces), based on the measuring the
count rate dRαβ = dNαβ/τd as a function of τd and τs (at fixed L) and comparing thedata with the results of Monte-Carlo simulations.
The optimal strategy of such an experiment should be a subject of a dedicated
analysis. .. Return



. . . . . .

Vacuum neutrino oscillations with relativistic wave packets in quantum field theory
Details on the “probability of neutrino oscillations“
Diagonal decoherence function

For the important special case, t′ = t (representative, in particular, for the experiments
with accelerator neutrino beams), we find

S0(t, t) = erf(2t)− 1− e−4t2

2
√
πt ≈


2t
√
π

(
1−

2t2
3

+
8t4
15

)
for t� 1,

1−
1

2
√
πt for t� 1.

(45)

.. Return
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S(t, t′, 0.1). S(t, t′, 0.2). S(t, t′, 0.3).

.. Return
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S(t, t′, 0.4). S(t, t′, 0.5). S(t, t′, 0.6).

.. Return
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S(t, t′, 0.7). S(t, t′, 0.8). S(t, t′, 0.9).

.. Return
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S(t, t′, 1.0). S(t, t′, 1.5). S(t, t′, 2.0).

.. Return
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S(t, t′, 3.0). S(t, t′, 4.0). S(t, t′, 5.0).

.. Return
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S(t, t′, 6.0). S(t, t′, 7.0). S(t, t′, 8.0).

.. Return
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S(t, t′, 9.0). S(t, t′, 10.0). S(t, t′, 15.0)/S0(t, t′).

.. Return
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S(t, t′, 0.10)/S0(t, t′),
S(t, t′, 0.50)/S0(t, t′).

S(t, t′, 0.75)/S0(t, t′),
S(t, t′, 1.00)/S0(t, t′).

S(t, t′, 1.50)/S0(t, t′),
S(t, t′, 4.00)/S0(t, t′).

.. Return
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Summary of OPERA results

Advance arrival of νµ from CERN to LNGS
δt = 57.8± 7.8(stat.)+8.3

−5.9(sys.)
this corresponds to

(v− c)/c = (2.37± 0.32(stat.)+0.34
−0.24(sys.))× 10−5

These results were reproduced by a test performed with a beam with a
short-bunch time-structure allowing measuring the neutrino time of
flight at the single interaction level.
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Possible explanations (> 140 papers already)

Superluminal ν. Lorentz symmetry violation.
Anomalous refraction in Earth interior, dark matter, etc
Fifth force, new fields, exotics
GR corrections
New geometry, several fundamental speed limits
extra dimensions
Wave packets, off-shell ν, neutrino oscillations
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Our explanation
It is possible that neutrino wave packet (WP) is macroscopically large in the
transverse size being microscopic in the direction of motion. This could
mimic early arrival of neutrino.
d⊥ �

(
0.1 eV
mν

)
km, d‖ =

d⊥
Γν

� 10−2

(
10 GeV
Eν

)(
0.1 eV
mν

)
µm.
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vν
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Relativistic Gauss Wave Packet

We built an explicit example of WP - Relativistic Gauss Wave Packet

ψ(p, x) = K1(ζm
2/2σ2)

ζK1(m2/2σ2)

def
= ψG(p, x), (46)

with dimensionless variable:

ζ = |ζ|eiϕ =

√
1− 4σ2

m2
[σ2x2 + i(px)]. (47)

RGP is a solution of Klein-Gordon equation
RGP is in general a dispersing with time wave packet. However its
dispersion can be not so fast as one usually assumes.
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Evolution of wave packet

A numerical example: σ2/m2 = 10−10, γ = 105
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For the given example RGP becomes a spherical wave like at
t ' 104m/σ2. At shorter distances ψG(x) behaves like a stable structure!
For realistic parameters of neutrino RGP the spherical asymptotics
becomes even later
For CERN-LNGS environment neutrino wave packet can be written as a
non -dispersing approximation of ψG(x):

ψ∗
ν = eiEν(x0−vνx)−σ2

νΓ2
ν (x‖−vνx0)2−σ2

νx2⊥ .
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Probability of neutrino CC interaction at LNGS as a function of
transverse radius r from the beam axis
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Calculation of OPERA expected arrival time distribution with and
without our effect
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Some outlook

Without any free parameter we find that OPERA should see some 20 ns
earlier arrival of neutrino with similar variance
Left edge of the time distribution is expected to be shifted by some 60
ns, while the right one y some 20-25 ns.
Similar calculations performed for MINOS give 120ns earlier arrival of
neutrino with surprizingly good agreement withe MINOS result

δt = (126± 32stat ± 64sys) нс (68% C.L.).
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