F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Dark Matter Distribution in our Galaxy

Fabrizio Nesti

Ruđer Boškovic Institute, Zagreb Gran Sasso Science Institute, L'Aquila

ULB, Bruxelles, March 7th 2014

P. Salucci, F.N., C.F. Martins, G. Gentile, A&A 2010 F.N., P. Salucci, JCAP 2013

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The DM densities

All searches depend on the expected DM density:

In the Solar System

```
Direct laboratory searches at Earth: . . . depend on the local density at earth \rho_\odot
```

```
Indirect searches (annihilation in Sun, Earth) . . . . depend on accumulated DM which again is driven by \rho_\odot
```

In the Galaxy

Looking for decay or annihilation $\dots \text{depend on } \int \rho \text{ or } \rho^2 \text{ along the l.o.s.}$

Both the Local and Galactic DM density are interesting.

Our Galaxy is a typical Spiral, where the picture is clear...

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Galaxies viewed from outside

E Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

DM in generic spiral galaxies: Observations

(日) (同) (日) (日)

R/R

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

DM in generic spiral galaxies: Observations II

Coadding thousands of galaxies led to a coherent empirical picture

Well modeled with a "cored" DM profile. . . with intriguiging relations:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Э

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

DM in generic spiral galaxies: Observations II

Well modeled with a "cored" DM profile... with intriguiging relations:

The Milky-Way conforms to this picture, but because we look from inside, life is not equally "easy"...

・ロト ・ 日本 ・ 日本 ・ 日本

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The MW DM Density profile

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method Result

Conclusions

Our galaxy

- Bulge (10¹⁰ M_☉)
- Stellar disk (5-7 × 10¹⁰ M_☉)
- Dark Matter halo (10¹¹⁻¹² M_☉)

and subleading

- Thick bulge/bar (up to \sim 4kpc)
- Thick disk (older stars up to $z \sim \text{kpc}$)
- Gas halo (few $10^{10} M_{\odot}$, to 100 kpc, new!)
- Stellar halo (globular clusters, old BHB, red, brown dwarfs, etc) (at least up to 80 kpc)

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method Result

Conclusions

Our galaxy

- Bulge (10¹⁰ M_☉)
- Stellar disk $(5-7 \times 10^{10} M_{\odot})$
- Dark Matter halo (10¹¹⁻¹² M_☉)

and subleading

- Thick bulge/bar (up to \sim 4kpc)
- Thick disk (older stars up to $z \sim \text{kpc}$)
- Gas halo (few $10^{10} M_{\odot}$, to 100 kpc, new!)
- Stellar halo (globular clusters, old BHB, red, brown dwarfs, etc) (at least up to 80 kpc)

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Result

Our galaxy

■ Bulge (10¹⁰ M_☉)

■ Stellar disk (5-7 × 10¹⁰ M_☉)

■ Dark Matter halo (10¹¹⁻¹² M_☉)

and subleading

- Thick bulge/bar (up to \sim 4kpc)
- Thick disk (older stars up to *z* ~ kpc)
- Gas halo (few $10^{10} M_{\odot}$, to 100 kpc, new!)
- Stellar halo (globular clusters, old BHB, red, brown dwarfs, etc) (at least up to 80 kpc)

Component profiles

The Dark Matter Distribution in our Galaxy

F. Nesti

DM profiles, Einasto, NFW, Burkert, cusped or cored

Froblem

Global density

MW Components

Model

Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

- Bulge: pointlike (as seen from r > 2 kpc) [Picaud+'04, Bissantz+'02, Robin+'11, ...] $M_B = 1.2-2 \times 10^{10} M_{\odot}$
- Disk: exponential, $\Sigma_D = (M_D/2\pi R_D^2) e^{-r/R_D}$ $\Delta z = 240 \text{pc}$ [PR'04,juric'08,robin'08,reyle'09,bovy'13] $M_D = 5-7 \times 10^{10} M_{\odot}$ $R_D = 2.5 \pm 0.2 \text{ kpc}$
 - ▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへの

Component profiles

The Dark Matter Distribution in our Galaxy

F. Nesti

Problem

Global density

MW Components

Model

Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

DM profiles, Einasto, NFW, Burkert, cusped or cored

- Bulge: pointlike (as seen from r > 2 kpc) [Picaud+'04, Bissantz+'02, Robin+'11, ...] $M_B = 1.2-2 \times 10^{10} M_{\odot}$
- Disk: exponential, $\Sigma_D = (M_D/2\pi R_D^2) e^{-r/R_D}$ $\Delta z = 240 pc$ [PR'04,juric'08,robin'08,reyle'09,bovy'13] $M_D = 5-7 \times 10^{10} M_{\odot}$ $R_D = 2.5 \pm 0.2 \text{ kpc}$

F. Nesti

Problem

Global density

MW Components Model

Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

All together (illustration)

One would like to observe V(r) to constrain ρ_{DM} .

But since we can not measure V(r) from outside... ...we need more elaborate observations.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Inner rotational velocities

Rotating hydrogen gas (HI) in the inner region

- Doppler gives relative speed along the l.o.s.
- Maximum at the tangential point, terminal velocities V_T :

$$V(r) = V_T(r/R_\odot) + V_\odot r/R_\odot$$

Between 2 and 8 kpc a lot of measures of HI along the arms, with systematic variations. Need to define a binning:

 \blacksquare Inside $\sim 2\,{\rm kpc}$ the bulge/bar structure prevents analysis.

イロト イポト イヨト イヨト

F. Nesti

Problem

Global density

MW Components Model Data: inner

Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Outer dispersion velocities

Out to $\sim 80\,\text{kpc},$ survey of 'old' halo stars, moving randomly. . .

Only l.o.s. speed... need to rely on virial equilibrium

- ~3000 Tracers
- Eliminate the outliers (|v| > 500 km/s, escape speed)
- Velocity dispersion $\sim 110\,{
 m km/s}$

・ロト ・ 日本 ・ 日本 ・ 日本

э

F. Nesti

Problem

Global density

- MW Components Model Data: inner Data: outer
- Data: masers Fits Escape Annihilation
- Local density
- Method Result
- Conclusions

The Outer dispersion velocities cont'd

- Each population of tracers has a measured density $ho_i \propto r^{-\gamma_i}$,
 - Consider virial equilibrium and use Jeans' Equation:

$$V^{2} = \sigma_{i}^{2} \left[\gamma_{i} - 2\beta_{i} - \frac{\partial \ln \sigma_{i}^{2}}{\partial \ln r} \right]$$

- Unknown velocity anisotropy β_i (maybe r dependent)
 Density power law: γ₁ ≃ 4, γ₂ ≃ 3.5
 Many magnetic θ = 0.5 + 0.5 (free 2.5 km/s) (free 2.5 km/s)
- More recently $\beta_2 \sim -0.5 \pm 0.5'$ (for $r > 25 \, \text{kpc}$) [Kafle+ '12]
 - i.e. more tangential motion

Also a hint on β_1 : $(\gamma_1 - 2\beta_1) \simeq (\gamma_2 - 2\beta_2)$ implies $\beta_1 \sim 0$ $(\partial \ln \sigma_i^2 / \partial \ln r \text{ is small})$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer

Data: masers Fits Escape Annihilation

Local density Method

Result Conclusions

The Outer dispersion velocities cont'd

Each population of tracers has a measured density $ho_i \propto r^{-\gamma_i}$,

Consider virial equilibrium and use Jeans' Equation:

$$V^{2} = \sigma_{i}^{2} \left[\gamma_{i} - 2\beta_{i} - \frac{\partial \ln \sigma_{i}^{2}}{\partial \ln r} \right]$$

- Unknown velocity anisotropy β_i (maybe r dependent)
 Density power law: γ₁ ≃ 4, γ₂ ≃ 3.5
- More recently $\beta_2 \sim -0.5 \pm 0.5'$ (for $r > 25 \, \text{kpc}$) [Kafle+ '12]

Method: We integrate Jeans' equation, for each choice of model parameters:

$$\{V^{model}(r), eta_i\} \quad o \quad \sigma_i^{model}(r),$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

and compare σ_i^{model} with data for that population.

(Traditionally: derive pseudo-measures of V, w/ great uncertainties.)

our Galax

Problem

Global density

MW Components Model Data: inner

Data: outer

Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Until 2010: the degeneration

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Inner: Bulge-Disk compensation
- Middle: Disk-DM Halo compensation
- Outer: DM Halo ρ_H - R_H flat direction
- and, V_{\odot} not fixed \rightarrow shift up/down.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Result

Conclusions

Masers in Star forming regions

・ロト ・ 日本 ・ 日本 ・ 日本

First results only.

In the near future more extensive surveys from BeSSeL and VERA.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Result Conclusions

Masers in Star forming regions

Parallax from ground based arrays:

Able to constrain: $V_{\odot}/R_{\odot} \simeq 30.2 \pm 0.3$ km/s kpc $V_{\odot} \simeq 239 \pm 7$ km/s [Brunthaler+ '11]

 $V(r \simeq 10 \mathrm{kpc}) \simeq 240 \pm 5 \mathrm{\,km/s}$

 $V(r \simeq 13 \text{kpc}) \simeq 244 \pm 4 \text{ km/s}$ [Sanna+ '11]

$$V(r \simeq 13 {
m kpc}) \simeq 250 \pm 2 {
m km/s}$$

[Bajkova+ '12]

(angular precision 0.01 mas)

(日) (四) (日) (日)

First results only.

In the near future more extensive surveys from BeSSeL and VERA.

Fitting

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

- Model parameters, giving $V_{circ}(r)$ and integrated dispersion $\sigma(r)$: Sun (R_{\odot} , V_{\odot} , related); Bulge (M_B); Disk (M_D , R_D); DM Halo: (ρ_H , R_H) Anisotropy for tracers (β_1 , β_2)
- Fitted against data: $V_T(x_i)$, $\sigma(r_i)$ and $V_{maser}(r_i)$.

■ Not all parameters relevant, most important are ρ_H , R_H , β_2 . Preference for Largest disk radius ($R_D \sim 3 \text{ kpc}$); Lightest bulge & disk ($M_B \simeq 10^{10} M_{\odot}$, $M_D \simeq 5 \times 10^{10} M_{\odot}$); (and see recent [Bovy Rix '13]!)

Fitting

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

- Model parameters, giving V_{circ}(r) and integrated dispersion σ(r): Sun (R_☉, V_☉, related); Bulge (M_B); Disk (M_D, R_D); DM Halo: (ρ_H, R_H) Anisotropy for tracers (β₁, β₂)
- Fitted against data: $V_T(x_i)$, $\sigma(r_i)$ and $V_{maser}(r_i)$.

■ Not all parameters relevant, most important are ρ_H , R_H , β_2 . Preference for Largest disk radius ($R_D \sim 3 \text{ kpc}$); Lightest bulge & disk ($M_B \simeq 10^{10} M_{\odot}$, $M_D \simeq 5 \times 10^{10} M_{\odot}$); (and see recent [Bovy Rix '13]!)

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method Result

Conclusions

Fits: three cases, with $\beta_2 = 0, -0.5, -1$

Best: $\chi^2/40 dof = 0.59, 0.41, 0.35$ (BUR) and 0.9, 0.46, 0.35 (NFW)

[from Dehnen+'96, to Deason+'12]

- Uncertainty in ρ_H , R_H due to the anisotropy β_2 .
- c_{vir} is too large wrt to predictions of ACDM simulations.
- So: the "cusp-problem" also in our Galaxy.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Correlations

NFW fit required widest/lightest Disk, Bulge \rightarrow cored..

イロト 不得下 不良下 不良下

æ

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Correlations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Comparing, for cored profile

Comparing the best (Burkert) fits with the other galaxies

Intriguing property: same central surface density $\rho_H r_H$ [Donato+ '09]

MW fits well, despite the large uncertainties.

What about the impact for DM searches...

F. Nesti

The DM escape velocity profile

At 2σ CL:

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

... mildly relevant for direct detection, especially at low DM mass.

(日) (同) (日) (日)

э

F. Nesti

The DM annihilation angular profile

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Method Result

Conclusions

... hard to discriminate, need to mess with the Galactic Center.

(a)

э

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annibilation

Local density

Method Result

Conclusions

The DM Density at the Sun location

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method Result

Conclusions

The Local DM density

Early vertical motion studies gave $\rho_{\odot} \simeq 0.3 \,\text{GeV/cm}^3$. [Kuijken+ '89] Other using early profile modeling (unreliable) or simulations. No uncertainty given before 2009...

Global profile modeling: in 2009 first estimate $\rho_{\odot} = 0.389 \pm 0.02 \text{ GeV/cm}^3 \qquad \text{[Catena+ '09]}$ too precise (see [Weber+ '10, Pato+ '11, McMillan '11] still modeling).

• Vertical force: Recent ESO survey claimed no DM!? $\rho_{\odot} = 0 \pm 0.05$, GeV/cm³ [Mona-Bidin+ '12] Criticized first by [Bovy+ '12], on the velocity assumptions. Other criticisms may be advanced. Method still uncertain (see GAIA).

• Our work to assess analytically the uncertainties found $\rho_{\odot} = 0.43 \pm 0.1 \pm 0.1 \,\text{GeV/cm}^3$ [Salucci, FN+ '10] still the most conservative, halo model independent.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Analytical method for the Local DM density

Decompose radial acceleration as due to Bulge + Disk + DM Halo

$$V^2/r = a_B + a_D + a_H.$$

Use Gauss law for the DM Halo, $\partial_r(r^2 a_H) \propto \rho_H r^2$

$$\begin{split} \rho_{H}(r) &= \frac{1}{4\pi G} \frac{1}{r^{2}} \frac{d}{dr} \left[r^{2} \left(\frac{V^{2}(r)}{r} - a_{D}(r) - a_{B}(r) \right) \right] X_{q} \,, \\ &= \frac{1}{4\pi G} \frac{V^{2}}{r^{2}} \left[\left(1 + 2 \frac{d \ln V}{d \ln r} \right) - \frac{V_{D}^{2}}{V^{2}} f\left(\frac{r}{R_{D}} \right) X_{z_{0}} \right] X_{q} \,. \\ &\to 0.65 \frac{\text{GeV}}{\text{cm}^{3}} \left(\frac{\omega_{\odot}}{\text{km/s kpc}} \right)^{2} X_{q} \left[(1 + 2\alpha_{\odot}) - \beta f(r_{\odot D}) X_{z_{0}} \right] , \end{split}$$

with f a known analytic function, for thin disk. Notes

- At R_{\odot} the contribution of Bulge is negligible
- $\omega_{\odot} \equiv (V_{\odot}/R_{\odot}) \simeq 30$, angular speed (very well known)
- $\alpha_{\odot} \equiv d \ln V/d \ln r|_{\odot} = 0 \pm 0.1$, RC slope (uncertain)
- $\beta \equiv (V_D/V_{\odot})^2 = 0.65 0.77$ "disk to total" ratio (constrained)
- $\rho_{\odot D} \equiv R_{\odot}/R_D = 3.4 \pm 0.5$ (constrained).
- $X_q \simeq 1$ corrects spherical Gauss law, for oblateness.
- $X_{z_0} \simeq 1$ corrects for nonzero disk thickness.

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

Result

An analytical formula:

$$\begin{split} \rho_{\odot} &= 0.43 \frac{\text{GeV}}{\text{cm}^3} \Bigg[1 + 2.9 \,\alpha_{\odot} - 0.64 \left(\beta - 0.72 \right) + 0.45 \left(r_{\odot D} - 3.4 \right) \\ &- 0.1 \left(\frac{z_0}{\text{kpc}} - 0.25 \right) + 0.10 \left(q - 0.95 \right) \\ &+ 0.07 \left(\frac{\omega}{\text{km/s kpc}} - 30.3 \right) \Bigg] \,. \end{split}$$

Good also for the future.

Today, using central values and present uncertainties:

$$\rho_{\odot} = \left(0.43 \pm 0.094_{(\alpha_{\odot})} \mp 0.016_{(\beta)} \pm 0.096_{(r_{\odot}\boldsymbol{\textit{p}})} \right) \frac{\text{GeV}}{\text{cm}^3} \,,$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

F. Nesti

Problem

Global density

- MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation
- Local density Method Result
- Conclusions

Conclusions

Dark Matter in our Galaxy:

- MW modeling starting to be reliable.
- Main uncertainty due to stellar halo velocity anisotropy.
- The model appears consistent with similar galaxies, and starts to give hints on the nature of DM.
- Preference for cored profile, down to 2 kpc.
- Large *c_{vir}* at odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still a good proper estimate.
- Uncertainties can not be reduced, at present.

F. Nesti

Problem

Global density

- MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation
- Local density Method Result
- Conclusions

Conclusions

Dark Matter in our Galaxy:

- MW modeling starting to be reliable.
- Main uncertainty due to stellar halo velocity anisotropy.
- The model appears consistent with similar galaxies, and starts to give hints on the nature of DM.
- Preference for cored profile, down to 2 kpc.
- Large *c_{vir}* at odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still a good proper estimate.
- Uncertainties can not be reduced, at present.

Thanks!

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Bulge mass

Measures are very uncertain:

• 2MASS survey (star count) yields a boxy bulge $\sim 0.61 \times 10^{10} M_{\odot}$ a thick bulge $\sim 0.026 \times 10^{10} M_{\odot}$

 $[Robin+ '11] (1.5 \times 0.4 \times 0.4) \, kpc \\ (4.4 \times 1.3 \times 0.8) \, kpc$

- Microlensing [Bissantz Gerard '02]
 $M_B = 0.9 \times 10^{10} M_{\odot}$ (probably underestimated)
- Infrared survey (star count) [Picaud Robin '04] a boxy bulge ~ $2.4 \pm 0.6 \times 10^{10} M_{\odot}$, including Disk. subtracting disk → $1.7-1.9 \pm 0.6 \times 10^{10} M_{\odot}$ or lower limit $M_B > 1.1-1.3 \times 10^{10} M_{\odot}$

Some improvement w/ APOGEE, or even VERA (?)

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Sun Galactic Radius and Angular Velocity

 $\begin{array}{c} \textbf{R}_\odot\\ \text{Gillessen 2009:}\\ 8.33\pm0.3\,\text{kpc} \end{array}$

Ghez et al 2009 (using orbits): 8.0 ± 0.6 kpc 8.4 ± 0.4 kpc(assuming stationary BH)

Bovy et al 2009 (a global average)

[0907.5423v2]

 $R_\odot = (8.2\pm0.5)\,\mathrm{kpc}$

• V_{\odot}/R_{\odot} measured with a high accuracy, much better than V_{\odot} and R_{\odot} separately:

 $V_{\odot}/R_{\odot} = (30.3 \pm 0.3) \, {\rm km/s/kpc}$

[MB+09,reid+09,Brunthaler+11]

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Sun Galactic Radius and Angular Velocity

■ *R*_☉ Gillessen 2009: 8.33 ± 0.3 kpc

> Ghez et al 2009 (using orbits): 8.0 ± 0.6 kpc 8.4 ± 0.4 kpc(assuming stationary BH)

Bovy et al 2009 (a global average)

[0907.5423v2]

$$R_{\odot} = (8.2 \pm 0.5) \, \text{kpc}$$

• V_{\odot}/R_{\odot} measured with a high accuracy, much better than V_{\odot} and R_{\odot} separately:

$$V_{\odot}/R_{\odot} = (30.3 \pm 0.3) \, \text{km/s/kpc}$$

[MB+09, reid+09, Brunthaler+11]

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Slope and Disk contribution R_{\odot}

Circular velocity slope α(r) = d ln V(r)/d ln r
 It is uncertain but limited, inside the solar circle:

$$lpha(2\,\mathrm{kpc} < r < 8\,\mathrm{kpc}) \simeq 0.1$$
–0

(also slightly correlated with R_{\odot} through the terminal velocities) At R_{\odot} we can take the broad range

 $\alpha_{\odot} = 0. \pm 0.1$

(confirmed by the global profile fits, above)

ション ふゆ アメリア メリア しょうくの

• Contribution of disk to sun's rotation, $\beta = V_D/V_{\odot}$ The disk can neither contribute totally, nor negligibly. A broad conservative range is

 $0.65 < \beta < 0.77$

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

The Slope and Disk contribution R_{\odot}

Circular velocity slope α(r) = d ln V(r)/d ln r
 It is uncertain but limited, inside the solar circle:

$$lpha(2\,\mathrm{kpc} < r < 8\,\mathrm{kpc}) \simeq 0.1$$
–0

(also slightly correlated with R_{\odot} through the terminal velocities) At R_{\odot} we can take the broad range

 $\alpha_{\odot} = 0. \pm 0.1$

(confirmed by the global profile fits, above)

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• Contribution of disk to sun's rotation, $\beta = V_D/V_{\odot}$ The disk can neither contribute totally, nor negligibly. A broad conservative range is

 $0.65 < \beta < 0.77$

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annibilation

Local density

Method Result

Conclusions

The Local DM density, cont'd

$$p_{\odot} = 0.65 \, \frac{\text{GeV}}{\text{cm}^3} \, \left(\frac{\omega_{\odot}}{\text{km/s kpc}}\right)^2 X_q \left[(1 + 2\alpha_{\odot}) - \beta \, f(r_{\odot D}) \, X_{z_0} \right],$$

Result depends on

$$\begin{split} \omega_{\odot} &\equiv (V_{\odot}/R_{\odot}), \text{ angular speed (very well known)} \\ \alpha_{\odot} &\equiv d \ln V/d \ln r|_{\odot}, \text{ RC slope (uncertain)} \\ \beta &\equiv (V_D/V_{\odot})^2 \text{ "disk to total" ratio (constrained)} \\ \rho_{\odot D} &\equiv R_{\odot}/R_D \text{ (constrained)}. \end{split}$$

Fig. A.1. Effect of the DM halo oblateness q.

Claim of no local DM!?

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density

Method Result

Conclusions

■ ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0

Claim of no local DM!?

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Result

Conclusions

■ ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0

Bovy-Tremaine refute (nonconstant velocity at higher z) Finds $\rho_{\odot} \simeq 0.3 \pm 0.1$.

Garbari et al refine the analysis and find 0.9 GeV/cm³
 But using simulation of the z dynamics and MCMC.

Also consistency of the sample can be questioned.

More generally,

it is hard to estimate the vertical dynamics. Waiting for GAIA - increasing statistics and precision

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Claim of no local DM!?

F. Nesti

Problem

Global density

MW Components Model Data: inner Data: outer Data: masers Fits Escape Annihilation

Local density Method

Result

Conclusions

■ ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0

• Bovy-Tremaine refute (nonconstant velocity at higher z) Finds $\rho_{\odot} \simeq 0.3 \pm 0.1$.

Garbari et al refine the analysis and find 0.9 GeV/cm³
 But using simulation of the z dynamics and MCMC.

Also consistency of the sample can be questioned.

More generally,

it is hard to estimate the vertical dynamics. Waiting for GAIA - increasing statistics and precision.