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ERA OF PRECISION COSMOLOGY

and... ?

We don't know the nature of

MORE THAN 90% OF THE UNIVERSE!!
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 dark energy (cosmological constant or quintessence) → ΩΛ = 1 − Ωm

 dark matter (CDM, WDM, some HDM) 

   → ΩDM = Ωm − Ωb
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 dark energy (cosmological constant or quintessence) → ΩΛ = 1 − Ωm

 dark matter (CDM, WDM, some HDM) 

   → ΩDM = Ωm − Ωb

 visible (baryonic) matter → Ωb ≅ 0.02 h−2

 matter → Ωm ≈ 0.2-0.3

 radiation (relic γ and ν) → ΩR ∼ 10−5 << Ωm

Components of a flat Universe Components of a flat Universe 

in standard cosmology:in standard cosmology:

Every dark matter candidate has a typical signature in the Universe.

The Universe itself is a giant laboratory for testing new physics.

search for dark matter candidates search for dark matter candidates 
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sectors are described by the same Lagrangians. (Foot,Lew,Volkas,1991)

GSM = SU(3) × SU(2) × U(1) → standard model of observable particles
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Mirror photons cannot interact with ordinary baryonsMirror photons cannot interact with ordinary baryons  ⇒⇒  dark matter !dark matter !

Lee & Yang, Lee & Yang, Question of parity conservation in weak interactionsQuestion of parity conservation in weak interactions, 1956: “If such asymmetry is indeed 
found, the question could still be raised whether there could not exist corresponding elementary 
particles exhibiting opposite asymmetry such that in the broader sense there will still be over-all right-
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Until now mirror particles can exist without violating any known experiment 
 we need to compare their astrophysical consequences with observations.
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IdeaIdea: there can exist a hidden mirror sector  of particles and 
interactions which is the exact duplicate of our observable world, except 
for the handedness of weak interactions.

TheoryTheory: product G×G′ of two sectors with the identical particle contents. Two sectors 
communicate via gravity. A symmetry P(G→G′), called mirror parity, implies that both 
sectors are described by the same Lagrangians. (Foot,Lew,Volkas,1991)

GSM = SU(3) × SU(2) × U(1) → standard model of observable particles

G′SM = [SU(3) × SU(2) × U(1)]′ → mirror counterpart with analogous particles

Mirror photons cannot interact with ordinary baryonsMirror photons cannot interact with ordinary baryons  ⇒⇒  dark matter !dark matter !

Lee & Yang, Lee & Yang, Question of parity conservation in weak interactionsQuestion of parity conservation in weak interactions, 1956: “If such asymmetry is indeed 
found, the question could still be raised whether there could not exist corresponding elementary 
particles exhibiting opposite asymmetry such that in the broader sense there will still be over-all right-
left symmetry.”

Their microphysics is the same but… cosmology is not the same !!
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evidence for non-standard big bang nucleosynthesis
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same cosmological densities  →  conflict with BBN (T ~ 1MeV)!! 
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Effects on neutron starsEffects on neutron stars

If dark matter is an ingredient of the Universe, it should be present in all gravitationally 
bound structures.

The mass–radius relation is significantly 
modified in the presence of a few percent mirror 
baryons. This effect mimics that of other exotica, 
e.g., quark matter.

The NS equilibrium sequence depends on the 
relative number of mirror baryons to ordinary 
baryons, i.e., it is history dependent.

In contrast to the mass–radius relation of 
ordinary NS, it is not a one-parameter sequence: 

non-uniqueness of the equilibrium sequence!

Key point: since mirror baryons are stable dark 
matter particles, they can accumulate into stars.



 

ULB-TH  -  16-12-2011

Effects on neutron starsEffects on neutron stars



 

ULB-TH  -  16-12-2011

Effects on neutron starsEffects on neutron stars

The distribution of mirror DM in galaxies is expected to be non-homogeneous, because 
mirror baryons should form complex structures in a similar way as ordinary baryons do. 



 

ULB-TH  -  16-12-2011

Effects on neutron starsEffects on neutron stars

The distribution of mirror DM in galaxies is expected to be non-homogeneous, because 
mirror baryons should form complex structures in a similar way as ordinary baryons do. 

Besides the mirror matter already present at 
star formation, three possibilities for its 
capture by an ordinary NS (or the opposite): 

●  accretion of particles from the homoge-
neous mirror interstellar medium;

● enhanced accretion rate if a NS passes 
through a high-density region of space, e.g., a 
mirror molecular cloud or planetary nebula;

● merging with macroscopic bodies in the 
mirror sector, causing violent events and 
possibly a collapse into a black hole (low 
probability, high energy output).



 

ULB-TH  -  16-12-2011

Effects on neutron starsEffects on neutron stars

The distribution of mirror DM in galaxies is expected to be non-homogeneous, because 
mirror baryons should form complex structures in a similar way as ordinary baryons do. 

Besides the mirror matter already present at 
star formation, three possibilities for its 
capture by an ordinary NS (or the opposite): 

●  accretion of particles from the homoge-
neous mirror interstellar medium;

● enhanced accretion rate if a NS passes 
through a high-density region of space, e.g., a 
mirror molecular cloud or planetary nebula;

● merging with macroscopic bodies in the 
mirror sector, causing violent events and 
possibly a collapse into a black hole (low 
probability, high energy output).

The mass and radius are independent of the present DM accretion on the star, but depend 
on the whole DM capture process integrated over the stellar lifetime, i.e., the effects of 
mirror matter should depend on the location and history of each star.
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Have neutron stars a dark matter core?Have neutron stars a dark matter core?
Recent observational results for masses and radii of some neutron stars are in contrast with 
theoretical predictions for “normal” neutron stars, and indicate that there  might not exist a 
unique equilibrium sequence. 

Is this a signature of a dark matter core 
inside NS?

Possibility to distinguish between scenarios: a spread of mass-radius measurements that 
cannot be interpreted with just one or two equilibrium sequences.

Only hypothesis: DM is made of some 
stable or long-living, non-annihilating 
particles, that can accumulate in the star. 

In the proposed scenario all mass-radius 
measurements can be explained with 
one nuclear matter equation of state and 
a dark core of varying relative size.

With the estimated density for galactic DM, either the DM is present already during the star 
formation process, or the density distribution of DM is highly non-homogeneous, with events 
like mergers with compact astrophysical objects with stellar sizes made of DM.
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ThermodynamicsThermodynamics

During the Universe expansion, the 
two sectors evolve with separately 
conserved entropies.

x free parameter

is time independent

the contribution of the mirror species is negligible in view of the BBN constraint!
while the ordinary particles are crucial on the thermodynamics of the M ones!

x≡ s 's 
1 /3
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Mangano et al. (astro-ph/0612150) 
show some tension between degrees 
of freedom at different epochs.

Mirror matter naturally predicts different degrees of freedom at 
BBN (1 MeV) and recombination (1 eV) epochs!
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The M sector has a negligible influence on the nucleosynthesis in the O sector.

The O sector has a big influence (higher for lower x) on the nucleosynthesis in 
the M sector!

Mirror sector is a He-world!

Big Bang nucleosynthesisBig Bang nucleosynthesis

2 fundamental parameters: 

degrees of freedom (extra- families), baryon to photon ratio:
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Mirror dark starsMirror dark stars (evolution) (evolution)

Massive Astrophysical Compact Massive Astrophysical Compact 
Halo Objects (MACHOs)Halo Objects (MACHOs)

microlensing microlensing 
eventsevents ⇒⇒

L∝7.5M 5.5

T e
4∝7.5

tMS∝
X

1.4

faster evolutionary times!faster evolutionary times!
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Photon-mirror photon kinetic Photon-mirror photon kinetic 
mixing and DAMA experimentmixing and DAMA experiment

Besides gravity, mirror particles could interact with the ordinary ones via renormalizable 
photon-mirror photon kinetic mixing, that enables mirror charged particles to couple to 
ordinary photons with charge εe.

R. Foot [arXiv:0804.4518]: mirror dark matter provides a simple explanation of the 
positive signal of DAMA/Libra consistently with the null results of the other direct 
detection experiments.

This scenario requires that:
●  the halo is dominated by He' with a small O' component
●  ordinary matter interacts with mirror dark matter via photon-mirror photon 
kinetic mixing of strength ε ~ 10-9.

Mirror baryons should constitute the dark halos of 
galaxies, primarily made of primordial He'. The 
high He' abundance induces fast stellar formation 
and evolution, that produce heavier nuclei, as O', 
ejected in SN explosions.  

The dark halo is mainly 
constituted of He' and O'.⇒
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BBN with photon-mirror photon kinetic mixingBBN with photon-mirror photon kinetic mixing
Assuming an effective initial condition T' << T, this mixing can populate the mirror sector 
in the early Universe, via the process                  , implying a generation of energy 
density in the mirror sector:

Constraint from ordinary BBN: δNν ≤  0.5 ⇒ T'/T < 0.6.

More stringent constraint from CMB and LSS: T'/T ≤ 0.3 ⇒ ε ≤ 3 1ּ0-9.

The photon-mirror photon mixing necessary to interpret dark matter 
detection experiments is consistent with constraints from ordinary BBN as 
well as the more stringent constraints from CMB and LSS.

at T ≤  1 MeV:

The e+′, e−′ will interact with each other via mirror weak and electromagnetic 
interactions, populating the γ′, ν′ , and thermalizing to a common temperature T′.
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Mirror sector starts with T' much lower than T, and 
later the photon–mirror photon kinetic mixing 
increases only the temperature of mirror electron-
positrons and photons, since neutrinos are decoupled.
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The M baryons density fluctuations should undergo the strong collisional damping 
around the time of M recombination due to photon diffusion, which washes out the 
perturbations at scales smaller than the M Silk scale MS'.

Dissipative effectsDissipative effects

Differences with the WDM free streaming damping: 

●  the M baryons should show acoustic oscillations in the LSS power spectrum;

●  such oscillations, transmitted via gravity to the O baryons, could cause observable 
anomalies in the CMB power spectrum.
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xxeq  adec 'aeq xxeq  adec 'aeq

M pertM J ' aeq

M S 'M pertM J ' aeq 

M pertM S '

growth

grow.oscill.grow.

dissipation







M pertM J ' adec '  growth

M pertM S ' dissipation
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●  low x  →   similar to CDM

●  low dependence on Ωb′  

We start from a reference model 

and we replace CDM… 

Cosmic Microwave BackgroundCosmic Microwave Background
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Large Scale StructureLarge Scale Structure

Field of density perturbations:

The transfer function: T(k)

The power spectrum:
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T 2
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●  low x  →  similar to CDM

●  high dependence on x

●  high dependence on Ωb'

At linear scales…At linear scales…

Large Scale StructureLarge Scale Structure
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Comparison with observationsComparison with observations

•  for high x →  high Ωb' excluded

•  for low x →  every Ωb' permitted
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Comparison with observationsComparison with observations

analyses based on numerical simulations 
of CMB and LSS suggest:

T'/T  ≤  0.3
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Comments?Comments?
Suggestions?Suggestions?

Collaborations?Collaborations?

And now your mirror feedback!And now your mirror feedback!
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Effects on neutron stars Effects on neutron stars 
the Chandrasekhar massthe Chandrasekhar mass
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At smaller scales…At smaller scales…

Large Scale StructureLarge Scale Structure

Cut-off scale dependent on x
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