Testing the Standard Model with the lepton g-2

Massimo Passera INFN Padova

Université Libre de Bruxelles February 7 2014

Preamble: today's values

0.24 parts per billion !! (Hanneke et al., PRL100 (2008) 120801)

a_μ = 116592089 (63) x 10⁻¹¹

0.5 parts per million !! (E821 – Final Report: PRD73 (2006) 072003)

 $a_{\tau} = -0.018 (17)$

Well, not much yet.... (PDG 2013)

Outline

- 1. Lepton magnetic moments: the basics
- 2. μ: The muon g-2: a quick update
- 3. e: Testing new physics with the electron g-2
- 4. τ: The tau g-2: opportunities & challenges (fantasies?)

1. Lepton magnetic moments: the basics

• Uhlenbeck and Goudsmit in 1925 proposed:

$$\vec{\mu} = g \frac{e}{2mc} \vec{s}$$
$$g = 2 \pmod{1!}$$

• Dirac 1928:

$$(i\partial_{\mu} - eA_{\mu})\gamma^{\mu}\psi = m\psi$$

• A Pauli term in Dirac's eq would give a deviation...

$$a \frac{e}{2m} \sigma_{\mu\nu} F^{\mu\nu} \psi \quad \to \quad g = 2(1+a)$$

...but there was no need for it! g=2 stood for ~20 yrs.

M. Passera ULB Feb 7 2014

• Kusch and Foley 1948:

$$\mu_e^{\rm exp} = \frac{e\hbar}{2mc} \ (1.00119 \pm 0.00005)$$

Schwinger 1948 (triumph of QED!):

$$\mu_e^{\rm th} = \frac{e\hbar}{2mc} \left(1 + \frac{\alpha}{2\pi}\right) = \frac{e\hbar}{2mc} \times 1.00116$$

Keep studying the lepton-γ vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p')\Big[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2}) + \dots\Big]u(p)$$

$$F_1(0) = 1$$
 $F_2(0) = a_l$

M. Passera ULB Feb 7 2014

A pure "quantum correction" effect!

2. The muon g-2: theory update

The old experiment E821

E821 @ BNL

The old experiment E821 (2)

The magnet reached Fermilab from BNL on July 26 2013

The muon g-2: the experimental result

• Today: $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5 \text{ppm}].$

Future: new muon g-2 experiments proposed at:

- Fermilab E989, aiming at ± 16x10⁻¹¹, ie 0.14ppm
- J-PARC aiming at 0.1 ppm

Sep 2012: CD0 approval! Data in (late) 2016?

See B. Lee Roberts & T. Mibe @ Tau2012, September 2012

Are theorists ready for this (amazing) precision? No(t yet)

The muon g-2: the QED contribution

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$ s

Schwinger 1948

+ 0.765857426 (16) (α/π)²

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8796 (63) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa, Kinoshita & Nio, 2007, Kinoshita et al. 2012, Steinhauser et al. 2013 (analytic, in progress).

+ **753.29 (1.04)** (α/π)⁵ **COMPLETED**!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio '06, Kinoshita et al. 2012

Adding up, we get:

The muon g-2: the electroweak contribution

One-loop plus higher-order terms:

The muon g-2: the hadronic LO contribution (HLO)

13

 $O(\alpha^3)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

Only tiny shifts if T data are used instead of the e⁺e⁻ ones Davier & Marciano '04.

The muon g-2: the hadronic HO contributions (HHO) - LBL

Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

"Bound" a_µ^{HHO}(IbI) < ~ 160 x 10⁻¹¹ Erler, Sanchez '06, Pivovarov '02; also Boughezal, Melnikov '11
 Lattice? Very hard... in progress. M. Golterman @ PhiPsi 2013; T. Blum @ Lattice 2012
 Pion exch. in holographic QCD agrees. D.K.Hong, D.Kim '09; Cappiello, Catà, D'Ambrosio '11
 "By far not complete" calculation: 188 x 10⁻¹¹ Fischer et al, PRD87(2013)034013
 Had IbI is likely to become the ultimate limitation of the SM prediction.

The muon g-2: SM vs. Experiment

Adding up all contributions, we get the following SM predictions and comparisons with the measured value:

a_μ^{EXP} = 116592089 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'06

$a_{\mu}^{\rm SM} imes 10^{11}$	$\Delta a_{\mu} = a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM}$	σ
116591793(66)	296 (91) × 10^{-11}	3.2 [1]
116591813(57)	$276~(85) \times 10^{-11}$	3.2 [2]
116591839(58)	$250~(86) \times 10^{-11}$	2.9[3]

with the "conservative" $a_u^{HHO}(IbI) = 116 (39) \times 10^{-11}$ and the LO hadronic from:

[1] Jegerlehner & Nyffeler, Phys. Rept. 477 (2009) 1

[2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2π)

[3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2π)

Note that the th. error is now about the same as the exp. one

The muon g-2: connection with the SM scalar mass

- Δa_{μ} can be explained in many ways: errors in LBL, QED, EW, HHO-VP, g-2 EXP, HLO; or, we hope, New Physics!
- Can Δa_{μ} be due to hypothetical mistakes in the hadronic $\sigma(s)$?
- An upward shift of $\sigma(s)$ also induces an increase of $\Delta \alpha_{had}^{(5)}(M_z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} &\to \\ a &= \int_{4m_{\pi}^2}^{s_u} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^3}, \ s_u < M_Z^2, \\ \Delta \alpha_{\text{had}}^{(5)} &\to \\ b &= \int_{4m_{\pi}^2}^{s_u} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_Z^2}{(M_Z^2 - s)(4\alpha\pi^2)}, \end{aligned}$$

and the increase

$$\Delta\sigma(s) = \epsilon\sigma(s)$$

 $(\varepsilon > 0)$, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right]$$

The muon g-2: connection with the SM scalar mass (2)

• How much does the M_H upper bound from the EW fit change when we shift $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

- Given the quoted exp. uncertainty of $\sigma(s)$, the possibility to explain the muon g-2 with these very large shifts $\Delta\sigma(s)$ appears to be very unlikely.
- Solution Also, given a 125 GeV SM scalar, these hypothetical shifts $\Delta\sigma(s)$ could only occur at very low energy (below ~ 1 GeV).
- Vice versa, assuming we now have a SM scalar with M = 125 GeV, if we bridge the M discrepancy in the EW fit via changes in the low-energy hadronic cross section, the muon g-2 discrepancy increases.

W.J. Marciano, A. Sirlin, MP, 2008 & 2010 (and work in progress)

3. Testing new physics with the electron g-2

G.F. Giudice, P. Paradisi, MP

JHEP 1211 (2012) 113

The QED prediction of the electron g-2

a	$\rho = + (1/2)(\alpha/\pi) - 0.328 478 444 002 55(33) (\alpha/\pi)^2$	2
	Schwinger 1948 Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; CODATA Mar '12	2
	$A_1^{(4)} = -0.328\ 478\ 965\ 579\ 193\ 78$	
	$A_2^{(4)}$ (m _e /m _µ) = 5.197 386 68 (26) x 10 ⁻⁷	2
	$A_2^{(4)} (m_e/m_{\tau}) = 1.83798 (33) \times 10^{-9}$	2
	+ 1.181 234 016 816 (11) (α/π) ³	<i>b</i>
(mm)	Kinoshita; Barbieri; Laporta, Remiddi; , Li, Samuel; MP '06; Giudice, Paradisi, MP 2012	D
(Tran	$A_1^{(6)} = 1.181\ 241\ 456\ 587$	m
	$A_2^{(6)} (m_e/m_\mu) = -7.37394162(27) \times 10^{-6}$	
(A)	$A_2^{(6)} (m_e/m_{\tau}) = -6.5830 (11) \times 10^{-8}$	A
(mm)	$A_3^{(6)} (m_e/m_{\mu}, m_e/m_{\tau}) = 1.909 82 (34) \times 10^{-13}$	m
(Arra)	- 1.9097 (20) (α/π) ⁴	2
(man)	Kinoshita & Lindquist '81,, Kinoshita & Nio '05; Aoyama, Hayakawa, Kinoshita & Nio 2012	D
	+ 9.16 (58) $(\alpha/\pi)^5$ COMPLETED! (12672 mass independent diagrams!)	2
M. Passera	Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (2012) 111807. ULB Feb 7 2014	21

What is the positronium contribution to the electron g-2?

What is the positronium contribution to the electron g-2? (2)

The SM prediction of the electron g-2

The electron g-2 gives the best determination of alpha

 The 2008 measurement of the electron g-2 is: a_e^{EXP} = 11596521807.3 (2.8) x 10⁻¹³ Hanneke et al, PRL100 (2008) 120801

 vs. old (factor of 15 improvement, 1.8 σ difference): a_e^{EXP} = 11596521883 (42) x 10⁻¹³ Van Dyck et al, PRL59 (1987) 26

• Equate $a_e^{SM}(\alpha) = a_e^{EXP} \rightarrow best determination of alpha (2014):$

 α^{-1} = 137.035 999 184 (35) [0.25 ppb]

Compare it with other determinations (independent of a_e):

Excellent agreement → beautiful test of QED at 4-loop level!

Old and new determinations of alpha

Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902 Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801 Bouchendira et al, PRL106 (2011) 080801 The electron g-2: SM vs. Experiment

• Using α = 1/137.035 999 049 (90) [⁸⁷Rb, 2011], the SM prediction for the electron g-2 is

 $a_e^{SM} = 115\ 965\ 218\ 18.7\ (0.6)\ (0.4)\ (0.2)\ (7.6)\ (0.1)\ x\ 10^{-13}$ $\delta C_4^{qed}\ \delta C_5^{qed}\ \delta a_e^{had}\ from\ \delta \alpha$ from positronium

• The EXP-SM difference is:

$$\Delta a_e = a_e^{EXP} - a_e^{SM} = -11.4 (8.1) \times 10^{-13}$$

The SM is in very good agreement with experiment (1.4 σ). NB: The 4-loop contrib. to a_e^{QED} is -5.56 x 10⁻¹¹ ~ 70 $\delta \Delta a_e$! (the 5-loop one is 6.2 x 10⁻¹³) The present sensitivity is $\delta \Delta a_e = 8.1 \times 10^{-13}$, ie (10⁻¹³ units):

 $\underbrace{(0.6)_{\text{QED4}}, (0.4)_{\text{QED5}}, (0.2)_{\text{HAD}}, (0.1)_{\text{Pos}}, (7.6)_{\delta\alpha}, (2.8)_{\delta a_e^{\text{EXP}}}}_{e}$

 $(0.7)_{TH} \leftarrow$ may drop to 0.2 or 0.3

- The (g-2)_e exp. error may soon drop below 10⁻¹³ and work is in progress for a significant reduction of that induced by $\delta \alpha$.
- \rightarrow sensitivity of 10⁻¹³ may be reached with ongoing exp. work

F. Terranova & G.M. Tino, arXiv:1312.2346

In a broad class of BSM theories, contributions to a₁ scale as

 $\frac{\Delta a_{\ell_i}}{\Delta a_{\ell}} = \left(\frac{m_{\ell_i}}{m_{\ell}}\right)^2$ This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

- The experimental sensitivity in ∆a_e is not far from what is needed to test if the discrepancy in (g-2)_µ also manifests itself in (g-2)_e under the naive scaling hypothesis.
- BSM scenarios exist which violate Naive Scaling. They can lead to larger effects in Δa_e (& Δa_{τ}) and contributions to EDMs, LFV or lepton universality breaking observables.
- Example: In the MSSM with non-degenerate but aligned sleptons (vanishing flavor mixing angles), ∆a_e can reach 10⁻¹² (at the limit of the present exp sensitivity). For these values one typically has breaking effects of lepton universality at the few per mil level (within future exp reach).

4. The tau g-2: opportunities & challenges

Work in progress in collaboration with S. Eidelman, D. Epifanov, M. Fael, L. Mercolli

arXiv:1301.5302 arXiv:1310.1081

The SM prediction of the tau g-2

- The very short lifetime of the tau makes it very difficult to determine a_τ measuring its spin precession in a magnetic field.
- DELPHI's result, from e⁺e⁻ → e⁺e⁻T⁺T⁻ total cross-section measurements at LEP 2 (the PDG value):

 $a_{\tau} = -0.018 (17)$ PDG 2012

 With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

-0.004 < a₁^{NP} < 0.006 (95% CL) Es

 $-0.007 < a_{T}^{NP} < 0.005$ (95% CL)

Escribano & Massó 1997

Gonzáles-Sprinberg et al 2000

 Bernabéu et al, propose the measurement of F₂(q²=M_Y²) from e⁺e⁻ → τ⁺τ⁻ production at B factories. NPB 790 (2008) 160

The tau g-2 via its radiative leptonic decays: a proposal

$$\begin{split} & \mathbf{Tau\ radiative\ leptonic\ decays\ at\ LO:} \\ & \frac{d^3\Gamma}{dx\ dy\ d\cos\theta} = \frac{\alpha\ M_\tau^5\ G_F^2\ y\ \sqrt{x^2 - 4r^2}}{2\pi(4\pi)^6}\ G_0(x, y, \cos\theta, r) \\ & \text{Kinoshita\ \&\ Sirlin\ PRL2(1959)177;\ Kuno\ \&\ Okada,\ RMP73(2001)151} \\ & \frac{\Gamma(\tau^- \to e^-\ \bar{\nu}_e\ \nu_\tau\ \gamma)}{\Gamma_{\text{total}}}\Big|_{E_\gamma > 10 \text{MeV}} = \underbrace{1.836\% \quad \text{vs} \quad 1.75(18)\%}_{\text{CLEO\ 2000}} \\ & \frac{\Gamma(\tau^- \to \mu^-\ \bar{\nu}_\mu\ \nu_\tau\ \gamma)}{\Gamma_{\text{total}}}\Big|_{E_\gamma > 10 \text{MeV}} = \underbrace{0.367\% \quad \text{vs} \quad 0.361(38)\%}_{\text{Oleventa}} \end{split}$$

 Add the contribution of the effective coupling and the QED corrections:

$$G_0 \to G_0 + \tilde{a}_\tau G_a + \frac{\alpha}{\pi} G_{\rm RC}$$

 Measure d³Γ precisely and get ã_T ! [see also Laursen, Samuel, Sen, PRD29 (1984) 2652]

The tau g-2 via its radiative leptonic decays: a proposal

Conclusions

- The lepton g-2 provide beautiful examples of interplay between theory and experiment.
- The discrepancy is Δa_µ ~ 3÷3.5 σ. Is it NP? New g-2 experiment, ring now in Fermilab! QED & EW terms ready for the challenge; How about the hadronic one? Future of LBL??
- Sould Δa_{μ} be due to mistakes in the hadronic $\sigma(s)$? Very unlikely. Also, given a 125 GeV SM scalar, these hypothetical shifts $\Delta \sigma(s)$ could only occur at very low energies (below ~ 1GeV).
- Solution The sensitivity of the electron g-2 has improved. The positronium contribution has recently been included. It may soon be possible to test if Δa_{μ} manifests itself also in the electron g-2! A robust and ambitious exp program is needed to improve α & a_e .

The tau g-2 is essentially unknown: we propose to measure it at Belle II via its radiative leptonic decays.

The End