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• Short introduction on 
cosmological perturbations 
during inflation

• The role of symmetries in the 
general knowledge we may 
acquire about the cosmological 
perturbations
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   matches Planck data
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The Inflationary Cosmology
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All massless scalar fields are 
quantum-mechanically excited during Inflation

Oscillator with time-dependent frequency
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Any light scalar field is quantum mechanically 
excited during inflation

with a scale-invariant power spectrum
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What do we really know about the
inflationary pertubations?

• Perturbations are of adiabatic/
curvature type

• They are nearly Gaussian



Pertubations are of the
adiabatic/curvature type

After inflation all components have the same 
gauge-invariant comoving curvature perturbation
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Quantum fluctuations on spatially flat 
  hypersurfaces during inflation
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Single-field models of inflation



The fluid is adiabatic during inflation: the adiabatic perturbation 
is generated at Hubble crossing during inflation   
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Single-field models of inflation
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Multi-field models of inflation

⇣̇ 6= 0
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The fluid is not adiabatic during inflation: the  adiabatic perturbation 
is generated after the end of inflation when the extra degree of freedom

finally decays into radiation   



Example: modulated decay rate 

The decay rate of the inflaton may depend on a light field:
its large scale fluctuations lead to fluctuations 

of the reheating temperature
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How can we distinguish
among these two basic scenarios?

Non-Gaussianity 
is  the key ingredient



Gaussian free (i.e. non-interacting)
field, linear theory 

Collection of independent harmonic
oscillators (no mode-mode coupling)

NG requires more than linear theory

“… the linear perturbations are so surprisingly simple that a
perturbation analysis accurate to second order may be
feasible …”    (Sachs & Wolfe 1967)



Non-Linearities in the perturbations

⇣(x) = ⇣g(x) + fNL
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• The expanding parameter is fNL⇣g ⌧ 1

• The non-linear parameter is usually

momentum-dependent



The primordial NG from single-field models 
of inflation is suppressed in the local squeezed limit

fNL(k1, k2, k3) / (n⇣ � 1)

J. Maldacena, 2003
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in the squeezed limit k3 ⌧ k1, k2

If NG observed in this configuration,
ALL single-field models 

would have been ruled out



A local observer sees the long wavelength mode 
as a scaling of coordinates

The transformation

gets rid of the long wavelength mode if 
the  system is exactly scale-invariant
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What is the shape of 
non-Gaussianity 

in multi-field inflation ?

During inflation the extra light fields do not
contribute to the energy density driving inflation

and inflation takes place in a geometry
very close to  de Sitter 

Use the symmetries of de Sitter 

A. Kehagias and A.R., 2012 & 2013I. Antoniadis et al., 2011; P.  Creminelli, 2011; 



Isometries of de Sitter
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• Translations plus rotations in the spatial coordinates

• Dilations ⌧ ! �⌧ and ~x ! �~x

• Special conformal transformations
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The SO(1,4) de Sitter isometry group acts
on constant time hypersurfaces
as a conformal group on R3

when the fluctuations are on super-Hubble scales
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The de Sitter metric is the induced metric 
on the hyperboloid from 

the five-dimensional Minkowski space-time
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For perturbations on super-Hubble scales  

X0 = � 1

2H2⌧
� 1

2

~x2

⌧
,

Xi =
xi

H⌧
,

X5 = � 1

2H2⌧
+

1

2

~x2

⌧

⌘ABX
AXB = �X2

0 +X2
i +X2

5 = 0

The conformal group SO(1,4) acts linearly on       but it 
induces the non-linear conformal transformations

XA

x

0
i = ai +M

j
i xj

x

0
i = �xi

x

0
i =

xi + bi~x
2

1 + 2~b · ~x+ b

2
~x

2



CFT dictates the correlators
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A detection of non-Gaussianity in the squeezed limit 
would have  indicated that the cosmological perturbations

are generated by a field different from the inflaton

The three-point correlator
is enhanced in the squeezed limit



The four-point correlator
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Use the CFT techniques developed by Gatto, Grillo & Ferrara in the 70’s on
conformal boostrap to solve for the CFT without Lagrangian
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However
Planck has seen no signature 

of non-Gaussianity

fNL = 2.7± 5.8

Other methods?
Will we ever know?



Can we at least say 
that during inflation 

the geometry  was (nearly) de Sitter? 
Common lore:  the perturbations have a

scale invariant  spectrum  because of  scale invariance  
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However

All  accelerating FRW cosmologies with equation of state 

exhibits three-dimensional conformal symmetry 
on future constant-time hypersurfaces. 

w = P/⇢ < �1/3

A. Kehagias and A.R., 2013



A generic FRW can also be embedded in a 
five-dimensional Minkowski space-time 
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For perturbations on super-Hubble scales
and accelerating universes   
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Accelerating FRW cosmologies exibit three-dimensional conformal 
symmetry on the future constant-time hypersurfaces 

�Dxi = �xi, �D⌧ = z� ⌧, �D,Ki⌧0 = 0,

�K xi = �2xi(~b · ~x) + bi(�⌧

2 + ~x

2), �K⌧ = �2q⌧(~b · ~x)



Perturbations on super-Hubble scales
in any  accelerating universes

may have a flat spectrum   

Couple appropriately the fluctuating field
with the inflaton field in such a way to get

an induced de Sitter-like metric   
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How can we know that during inflation 
the geometry was (nearly) de Sitter? 

Tensor perturbations
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Conclusions
• Symmetries are a powerful tool to 

characterize the cosmological 
perturbations

• Observationally, we will probably 
never know the true origin of the 
inflationary perturbations

• Observationally, we might know the 
geometry during inflation only by 
measuring tensor modes 


