

Cosmology with Mimetic Matter

Alexander Vikman

26.11.14

Plan

• What is mimetic matter?

- What is mimetic matter?
- Cosmology of "dust" with arbitrary equation of state

- What is mimetic matter?
- Cosmology of "dust" with arbitrary equation of state
- Imperfect DM and Perfect Tracker

- What is mimetic matter?
- Cosmology of "dust" with arbitrary equation of state
- Imperfect DM and Perfect Tracker
- Simple inflation

- What is mimetic matter?
- Cosmology of "dust" with arbitrary equation of state
- Imperfect DM and Perfect Tracker
- Simple inflation
- Conclusions

- What is mimetic matter?
- Cosmology of "dust" with arbitrary equation of state
- Imperfect DM and Perfect Tracker
- Simple inflation
- Conclusions

This talk is mostly based on

e-Print: arXiv: **1403.3961,** JCAP 1406 (2014) 017 with *A. H. Chamseddine and V. Mukhanov*

and

1412.XXXX with L. Mirzagholi

Mimetic Matter

One can encode the conformal / scalar part of the physical metric $g_{\mu\nu}$ in a scalar field ϕ :

$$g_{\mu\nu}\left(\tilde{g},\phi\right) = \tilde{g}_{\mu\nu}\,\tilde{g}^{\alpha\beta}\,\partial_{\alpha}\phi\,\partial_{\beta}\phi$$

One can encode the conformal / scalar part of the physical metric $g_{\mu\nu}$ in a scalar field ϕ :

$$g_{\mu\nu}\left(\tilde{g},\phi\right) = \tilde{g}_{\mu\nu}\,\tilde{g}^{\alpha\beta}\,\partial_{\alpha}\phi\,\partial_{\beta}\phi$$
auxiliary metric

One can encode the conformal / scalar part of the physical metric $g_{\mu\nu}$ in a scalar field ϕ :

$$g_{\mu\nu}\left(\tilde{g},\phi\right) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha}\phi \partial_{\beta}\phi$$
auxiliary metric

$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

One can encode the conformal / scalar part of the physical metric $g_{\mu\nu}$ in a scalar field ϕ :

$$g_{\mu\nu}\left(\tilde{g},\phi\right) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha}\phi \partial_{\beta}\phi$$

auxiliary metric
$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

 The theory becomes invariant with respect to Weyl transformations:

$$\tilde{g}_{\mu\nu} \to \Omega^2 \left(x \right) \tilde{g}_{\mu\nu}$$

One can encode the conformal / scalar part of the physical metric $g_{\mu\nu}$ in a scalar field ϕ :

$$g_{\mu\nu}\left(\tilde{g},\phi\right) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha}\phi \partial_{\beta}\phi$$
auxiliary metric

$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

 The theory becomes invariant with respect to Weyl transformations:

$$\tilde{g}_{\mu\nu} \to \Omega^2 \left(x \right) \tilde{g}_{\mu\nu}$$

The scalar field obeys a constraint (Hamilton-Jacobi equation):

$$g^{\mu\nu}\,\partial_\mu\phi\,\partial_\nu\phi = 1$$

$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

with
$$g_{\mu\nu}(\tilde{g},\phi) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha} \phi \partial_{\beta} \phi$$

$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

with
$$g_{\mu\nu}(\tilde{g},\phi) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha} \phi \partial_{\beta} \phi$$

is *not* in the Horndeski (1974) construction of the most general scalar-tensor theory with *second order* equations of motion

$$S\left[\tilde{g}_{\mu\nu},\phi,\Phi_{m}\right] = \int \mathrm{d}^{4}x \left[\sqrt{-g}\left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right)\right)\right]_{g_{\mu\nu}=g_{\mu\nu}(\tilde{g},\phi)}$$

with
$$g_{\mu\nu}(\tilde{g},\phi) = \tilde{g}_{\mu\nu} \tilde{g}^{\alpha\beta} \partial_{\alpha} \phi \partial_{\beta} \phi$$

is *not* in the Horndeski (1974) construction of the most general scalar-tensor theory with *second order* equations of motion

But it is still a system with one degree of freedom + standard two polarizations for the graviton!

Hamilton-Jacobi equation

$$g^{\mu\nu}\,\partial_\mu\phi\,\partial_\nu\phi = 1$$

 $u_{\mu} = \partial_{\mu} \phi$ tangential to time-like geodesics

Hamilton-Jacobi equation

$$g^{\mu\nu}\,\partial_{\mu}\phi\,\partial_{\nu}\phi = 1$$

 $u_{\mu} = \partial_{\mu} \phi$ tangential to time-like geodesics

Indeed,

$$u^{\lambda} \nabla_{\lambda} u_{\alpha} = \nabla^{\lambda} \phi \nabla_{\lambda} \nabla_{\alpha} \phi = \frac{1}{2} \nabla_{\alpha} \left(\nabla^{\lambda} \phi \nabla_{\lambda} \phi \right) = 0$$

Dissformal Transformation

Nathalie Deruelle and Josephine Rua (2014)

One obtains the same dynamics (*the same Einstein equations*), if instead of varying the Einstein-Hilbert action with respect to the metric $g_{\mu\nu}$ one plugs in a *dissformal transformation* $g_{\mu\nu} = F(\Psi, w) \ell_{\mu\nu} + H(\Psi, w) \partial_{\mu} \Psi \partial_{\nu} \Psi$ with $w = \ell^{\mu\nu} \partial_{\mu} \Psi \partial_{\nu} \Psi$ and $w^2 F \frac{\partial}{\partial w} \left(H + \frac{F}{w}\right) \neq 0$

and varies with respect to $\ell_{\mu\nu}, \Psi$

Dissformal Transformation

Nathalie Deruelle and Josephine Rua (2014)

One obtains the same dynamics (the same Einstein equations), if instead of varying the Einstein-Hilbert action with respect to the metric $g_{\mu\nu}$ one plugs in a *dissformal transformation* $g_{\mu\nu} = F\left(\Psi, w\right)\ell_{\mu\nu} + H\left(\Psi, w\right)\partial_{\mu}\Psi\partial_{\nu}\Psi$ with $w = \ell^{\mu\nu} \partial_{\mu} \Psi \partial_{\nu} \Psi$ and $w^2 F \frac{\partial}{\partial w} \left(H + \frac{F}{w} \right) \neq 0$ and varies with respect to $\ell_{\mu\nu}, \Psi$ Mimetic gravity is an exception! And it does provide new dynamics!

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013) Lim, Sawicki, Vikman; (2010)

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013) Lim, Sawicki, Vikman; (2010)

• Weyl-invariance allows one to fix $g_{\mu\nu} = \tilde{g}_{\mu\nu}$

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013) Lim, Sawicki, Vikman; (2010)

- Weyl-invariance allows one to fix $g_{\mu\nu} = \tilde{g}_{\mu\nu}$
 -) one implements constraint through $\lambda \left(g^{\mu
 u} \partial_{\mu} \phi \partial_{
 u} \phi 1
 ight)$

$$S\left[g_{\mu\nu},\phi,\lambda,\Phi_{m}\right] = \int \mathrm{d}^{4}x \sqrt{-g} \left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right) + \lambda\left(g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - 1\right)\right)$$

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013) Lim, Sawicki, Vikman; (2010)

- Weyl-invariance allows one to fix $g_{\mu\nu} = \tilde{g}_{\mu\nu}$
-) one implements constraint through $\lambda \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi 1 \right)$

$$S\left[g_{\mu\nu},\phi,\lambda,\Phi_{m}\right] = \int \mathrm{d}^{4}x \sqrt{-g} \left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right) + \lambda\left(g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - 1\right)\right)$$

The system is equivalent to standard GR + irrotational dust, moving along timelike geodesics with the velocity $u_{\mu} = \partial_{\mu}\phi$ and energy density $\rho = 2\lambda$

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013) Lim, Sawicki, Vikman; (2010)

- Weyl-invariance allows one to fix $g_{\mu\nu} = \tilde{g}_{\mu\nu}$
-) one implements constraint through $\lambda \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi 1 \right)$

$$S\left[g_{\mu\nu},\phi,\lambda,\Phi_{m}\right] = \int \mathrm{d}^{4}x \sqrt{-g} \left(-\frac{1}{2}R\left(g\right) + \mathscr{L}\left(g,\Phi_{m}\right) + \lambda\left(g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - 1\right)\right)$$

• The system is equivalent to standard GR + irrotational dust, moving along timelike geodesics with the velocity $u_{\mu} = \partial_{\mu} \phi$ and energy density $\rho = 2\lambda$

"Cold Dark Matter"?

- Iust add a potential $V(\phi)$
- $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$ Convenient to take ϕ as time

- Just add a potential $V(\phi)$!
- $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$ Convenient to take ϕ as time
- Adding a potential = adding a function of time in the equation $2\dot{H} + 3H^2 = V(t)$

Lim, Sawicki, Vikman; (2010) Chamseddine, Mukhanov, Vikman (2014)

- Just add a potential $V(\phi)$!
- $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$ Convenient to take ϕ as time
- Adding a potential = adding a function of time in the equation $2\dot{H} + 3H^2 = V(t)$

Enough freedom to obtain any cosmological evolution!

Lim, Sawicki, Vikman; (2010) Chamseddine, Mukhanov, Vikman (2014)

- Iust add a potential $V(\phi)$
- $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$ Convenient to take ϕ as time
- Adding a potential = adding a function of time in the equation $2\dot{H} + 3H^2 = V(t)$

Enough freedom to obtain any cosmological evolution!

• In particular $V(\phi) = \frac{1}{3} \frac{m^4 \phi^2}{e^{\phi} + 1}$ gives the same cosmological inflation as $\frac{1}{2}m^2\phi^2$ potential in the standard case

The simplest way to generate needed cosmological evolution

$$\ddot{\xi} - \frac{3}{4}V(t)\xi = 0$$

where $\xi = a^{3/2}$

The simplest way to generate needed cosmological evolution

$$\ddot{\xi} - \frac{3}{4}V(t)\xi = 0$$
where $\xi = a^{3/2}$

even a bouncing universe is possible!

The simplest way to generate needed cosmological evolution

$$\ddot{\xi} - \frac{3}{4}V(t)\xi = 0$$
where $\xi = a^{3/2}$

even a bouncing universe is possible!

e.g. for
$$V(\phi) = \frac{4}{3} \frac{\alpha}{(\phi^2 + \phi_0^2)^2}$$
Perturbations I

Lim, Sawicki, Vikman; (2010) Chamseddine, Mukhanov, Vikman (2014)

Even with potential, the energy still moves along the timelike geodesics

Perturbations I

Lim, Sawicki, Vikman; (2010) Chamseddine, Mukhanov, Vikman (2014)

Even with potential, the energy still moves along the timelike geodesics

Perturbations I

Lim, Sawicki, Vikman; (2010) Chamseddine, Mukhanov, Vikman (2014)

Even with potential, the energy still moves along the timelike geodesics

 $c_{\rm S}=0$

Newtonian potential:

$$\Phi = C_1 \left(\mathbf{x} \right) \left(1 - \frac{H}{a} \int a dt \right) + \frac{H}{a} C_2 \left(\mathbf{x} \right)$$

Here on **all scales** but in the usual cosmology it is an approximation for **superhorizon** scales

Chamseddine, Mukhanov, Vikman (2014)

Chamseddine, Mukhanov, Vikman (2014)

Just add higher derivatives !

$$\frac{1}{2}\gamma\left(\Box\phi\right)^{2}$$

Chamseddine, Mukhanov, Vikman (2014)

Just add higher derivatives !

$$\frac{1}{2}\gamma\left(\Box\phi\right)^{2}$$

The sound speed is
$$c_s^2 = \frac{\gamma}{2-3\gamma}$$

Chamseddine, Mukhanov, Vikman (2014)

Just add higher derivatives !

$$\frac{1}{2}\gamma\left(\Box\phi\right)^{2}$$

• The sound speed is $c_s^2 = \frac{\gamma}{2-3\gamma}$

Back to waves, oscillators and normal quantum fluctuations!

The scalar field still obeys a constraint (Hamilton-Jacobi equation) $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$

The scalar field still obeys a constraint (Hamilton-Jacobi equation) $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$

Weigher time derivatives can be eliminated just by the differentiation of this Hamilton-Jacobi equation

The scalar field still obeys a constraint (Hamilton-Jacobi equation) $g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = 1$

- Weigher time derivatives can be eliminated just by the differentiation of this Hamilton-Jacobi equation
- There are only minor changes (rescaling) in the background evolution equations e.g.

$$2\dot{H} + 3H^2 = \frac{2}{2 - 3\gamma}V(t)$$

Mirzagholi, Vikman (to appear 2014)

no potential

ntial $T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$

Mirzagholi, Vikman (to appear 2014)

no potential

ntial $T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$

 $\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$

expansion $\theta = \nabla_{\mu} u^{\mu}$

Mirzagholi, Vikman (to appear 2014) $\gamma\left(\Box\phi
ight)^2$

no potential

energy flow $q_{\mu} = -\gamma \perp_{\mu}^{\lambda} \nabla_{\lambda} \theta$

$$T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$$

 $\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$

expansion $\theta = \nabla_{\mu} u^{\mu}$

Mirzagholi, Vikman (to appear 2014) $\gamma \left(\Box\phi
ight)^2$

no potential

$$T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$$

energy flow
$$q_{\mu} = -\gamma \bot^{\lambda}_{\mu} \nabla_{\lambda} \theta$$

$$\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$$

expansion $\theta = \nabla_{\mu} u^{\mu}$

energy density
$$\varepsilon = 2\lambda - \gamma \left(\dot{\theta} - \frac{1}{2} \theta^2 \right)$$

Mirzagholi, Vikman (to appear 2014) $\gamma\left(\Box\phi
ight)^2$

no potential

$$T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$$

energy flow
$$q_{\mu} = -\gamma \bot^{\lambda}_{\mu} \nabla_{\lambda} \theta$$

expansion
$$\theta = \nabla_{\mu} u^{\mu}$$

 $\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$

energy density
$$\varepsilon = 2\lambda - \gamma \left(\dot{\theta} - \frac{1}{2}\theta^2\right)$$

pressure $p = -\gamma \left(\dot{\theta} + \frac{1}{2}\theta^2\right)$

Mirzagholi, Vikman (to appear 2014) $\gamma \left(\Box\phi
ight)^2$

no potential

$$T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$$

energy flow
$$q_{\mu} = -\gamma \bot^{\lambda}_{\mu} \nabla_{\lambda} \theta$$

$$\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$$

expansion
$$\theta = \nabla_{\mu} u^{\mu}$$

energy density
$$\varepsilon = 2\lambda - \gamma \left(\dot{\theta} - \frac{1}{2}\theta^2\right)$$

pressure $p = -\gamma \left(\dot{\theta} + \frac{1}{2}\theta^2\right)$

Mirzagholi, Vikman (to appear 2014) $\gamma \left(\Box\phi
ight)^2$

no potential

$$T_{\mu\nu} = \varepsilon u_{\mu}u_{\nu} - p \perp_{\mu\nu} + q_{\mu}u_{\nu} + q_{\nu}u_{\mu}$$

Ν

/

energy flow
$$q_{\mu} = -\gamma \bot^{\lambda}_{\mu} \nabla_{\lambda} \theta$$

$$\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$$

expansion $\theta = \nabla_{\mu}u^{\mu}$

energy density
$$\varepsilon = 2\lambda - \gamma \left(\dot{\theta} - \frac{1}{2}\theta^2\right)$$

pressure $p = -\gamma \left(\dot{\theta} + \frac{1}{2}\theta^2\right)$

option for DE $p \simeq -\varepsilon$

Violation of the Einstein's equivalence principle?

Raychaudhuri at work!

$$\dot{\theta} = -\frac{1}{3}\theta^2 - \sigma^2 - R_{\mu\nu}u^{\mu}u^{\nu}$$
$$R_{\mu\nu} = T_{\mu\nu} - \frac{1}{2}Tg_{\mu\nu}$$

Mirzagholi, Vikman (to appear 2014)

no potential $\phi \rightarrow \phi + c$ symmetry

Mirzagholi, Vikman (to appear 2014)

no potential $\phi o \phi + c$ symmetry $\nabla_{\mu} J^{\mu} = 0$

 $\phi
ightarrow \phi + c$ symmetry

Mirzagholi, Vikman (to appear 2014)

no potential

 $\nabla_{\mu}J^{\mu} = 0$

Noether current:

$$J_{\mu} = n u_{\mu} + q_{\mu}$$

Mirzagholi, Vikman (to appear 2014)

no potential $\phi \rightarrow \phi + c$ symmetry $\nabla_{\mu}J^{\mu} = 0$ Noether current: $J_{\mu} = nu_{\mu} + q_{\mu}$ charge density $n=2\lambda-\gamma \dot{\theta}$

Charge conservation $n = 2\lambda - \gamma \dot{\theta} \propto a^{-3}$

Charge conservation $n = 2\lambda - \gamma \dot{\theta} \propto a^{-3}$

Inflation $\lambda_{\star} = \gamma \theta$

Charge conservation
$$n = 2\lambda - \gamma \dot{\theta} \propto a^{-3}$$

Mirzagholi, Vikman (to appear 2014)

Charge conservation
$$n = 2\lambda - \gamma \dot{\theta} \propto a^{-3}$$

Inflation $\lambda_{\star} = \gamma \dot{\theta}$

$$\frac{p_{\star}}{\varepsilon_{\star}} = -1 - \frac{2}{3} \frac{\dot{H}}{H^2} = w_{\Sigma}$$

$$\varepsilon_{\star} = \frac{12\pi\gamma}{1 - 12\pi\gamma} \rho_{\rm ext}$$

Perturbations HD

Chamseddine, Mukhanov, Vikman (2014)

Perturbations HD

Chamseddine, Mukhanov, Vikman (2014)

$$\delta\ddot{\phi} + H\delta\dot{\phi} - \frac{c_s^2}{a^2}\Delta\delta\phi + \dot{H}\delta\phi = 0$$

with the sound speed
$$\ c_s^2 = rac{\gamma}{2-3\gamma}$$

Perturbations HD

Chamseddine, Mukhanov, Vikman (2014)

$$\delta\ddot{\phi} + H\delta\dot{\phi} - \frac{c_s^2}{a^2}\Delta\delta\phi + \dot{H}\delta\phi = 0$$

with the sound speed
$$\ c_s^2 = rac{\gamma}{2-3\gamma}$$

Newtonian potential: $\Phi=\delta\phi$

Quantization

Quantization

the action

$$S = -\frac{1}{2} \int d\eta d^3 x \left(\frac{\gamma}{c_s^2} \delta \phi' \Delta \delta \phi' + \ldots \right)$$

Quantization

the action

$$S = -\frac{1}{2} \int d\eta d^3 x \left(\frac{\gamma}{c_s^2} \delta \phi' \Delta \delta \phi' + \ldots \right)$$

short wavelength quantum fluctuations

$$\delta\phi_k \sim \sqrt{\frac{c_s}{\gamma}} \ k^{-3/2}$$

match with the long-wave-length limit

Perturbations in Mimetic Inflation

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$
Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

Newtonian potential $\Phi_{\lambda} \simeq \sqrt{c_{\rm s}}/\gamma \cdot H_{c_{\rm s}} k \simeq H$

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

Newtonian potential $\Phi_{\lambda} \simeq \sqrt{c_{\rm s}}/\gamma \cdot H_{c_{\rm s}} k \simeq H$

for
$$c_{\rm S} \ll 1$$
 $\Phi_{\ell} \sim c_s^{-1/2} H_{c_s k \sim Ha}$

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

Newtonian potential $\Phi_{\lambda} \simeq \sqrt{c_{\rm s}/\gamma} \cdot H_{c_{\rm s}} k \simeq H$

for
$$c_{\rm S} \ll 1$$
 $\Phi_{\ell} \sim c_s^{-1/2} H_{c_s k \sim Ha}$
for $c_{\rm S} \gg 1$ $\Phi_{\ell} \sim c_s^{1/2} H_{c_s k \sim Ha}$

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

-) Newtonian potential $~\Phi_\lambda\simeq \sqrt{c_{
 m s}/\gamma}\cdot H_{c_{
 m s}}k{\simeq} H$
 - for $c_{\rm S} \ll 1$ $\Phi_{\ell} \sim c_s^{-1/2} H_{c_s k \sim Ha}$ for $c_{\rm S} \gg 1$ $\Phi_{\ell} \sim c_s^{1/2} H_{c_s k \sim Ha}$
- Sravitational Waves are unchanged $h_{\lambda} \simeq H_{k \simeq H}$

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

-) Newtonian potential $~\Phi_\lambda \simeq \sqrt{c_{
 m s}/\gamma} \cdot H_{c_{
 m s}} k{\simeq} H$
 - for $c_{\rm S} \ll 1$ for $c_{\rm S} \ll 1$ $\Phi_{\ell} \sim c_s^{-1/2} H_{c_s k \sim Ha}$ $\Phi_{\ell} \sim c_s^{1/2} H_{c_s k \sim Ha}$
- Gravitational Waves are unchanged $h_{\lambda} \simeq H_{k \simeq H}$
 - Sequences spectral indices $n_{\rm S} 1 = n_{\rm T}$

Chamseddine, Mukhanov, Vikman (2014)

on scale $\lambda \simeq k^{-1}$

- Newtonian potential $\Phi_{\lambda} \simeq \sqrt{c_{\rm s}/\gamma} \cdot H_{c_{\rm s}} k \simeq H$
 - for $c_{\rm S} \ll 1$ for $c_{\rm S} \gg 1$ $\Phi_{\ell} \sim c_s^{-1/2} H_{c_s k \sim Ha}$ $\Phi_{\ell} \sim c_s^{1/2} H_{c_s k \sim Ha}$
- Gravitational Waves are unchanged $h_{\lambda} \simeq H_{k \simeq H}$

 $\begin{aligned} & & & \\ \hline {\bf \Theta} \ {\rm spectral \ indices} \ \ n_{\rm S} - 1 = n_{\rm T} \\ & & \\ \hline {\bf \Theta} \ {\rm small \ sound \ speed} \ \ {\bf \Phi}_{\lambda} \gg h_{\lambda} \end{aligned}$

But it seems that there is no usual Non-Gaussianity!

New large class of Weyl-invariant scalar-tensor theories beyond (but not in contradiction with) Horndeski

- New large class of Weyl-invariant scalar-tensor theories beyond (but not in contradiction with) Horndeski
- Can unite part of DM with DE strongly, decouples equation of state from the sound speed
- Imperfect DM, with a novel transport and perfect tracking

- New large class of Weyl-invariant scalar-tensor theories beyond (but not in contradiction with) Horndeski
- Can unite part of DM with DE strongly, decouples equation of state from the sound speed
- Imperfect DM, with a novel transport and perfect tracking
- New class of inflationary models with suppressed gravity waves and seemingly low non-Gaussianity

- New large class of Weyl-invariant scalar-tensor theories beyond (but not in contradiction with) Horndeski
- Can unite part of DM with DE strongly, decouples equation of state from the sound speed
- Imperfect DM, with a novel transport and perfect tracking
- New class of inflationary models with suppressed gravity waves and seemingly low non-Gaussianity

Thanks a lot for attention!