The amplification of magnetic fields by the turbulent dynamo in the early Universe

Jacques M. Wagstaff *Phys. Rev.* D**89**:103001 arXiv:1304.4723 *Hamburger Sternwarte, Hamburg University* Robi Banerjee¹, Dominik Schleicher², and Günter Sigl³

¹Hamburg University ²Institut für Astrophysik, Georg-August-Universität Göttingen ³II Institut für Theoretische Physik, Universität Hamburg

Service de Physique Théorique, Université Libre de Bruxelles, May 23rd, 2014

R FORSCHUNG I DER LEHRE I DER BILDUNG

1/33

Bruxelles 2014

Observational evidence:

Stars, solar system, Milky Way

(Donati&Landstreet 2009; Weilebinski 2005)

• Galaxies - low and high redshift - $B = O(10)\mu G$

(Bernet et al. 2008; Beck 2012; Hammond et al. 2012)

Clusters and superclusters of galaxies - B = O(1)µG

(Clarke et al. 2001; Ferretti et al. 2012; Xu et al. 2006)

• Voids of the Large Scale Structure - $\gtrsim 10^{-7}$ nG

(Neronov&Vovk 2010; Tavecchio et al. 2010, 2011)

Magnetic fields in Galaxies

Synchrotron radiation + Faraday rotation of polarized component

M 51: Radio emission B-vectors (Fletcher et al. 2011)

MPIfR Bonn and Hubble Heritage Team

mburg ≹ BILDUNG

Magnetic fields in low and high redshift Galaxies

Faraday Rotation Measures

- No significant evolution with redshift: $B = O(10)\mu G$
- B-fields generated quickly at an early epoch

周下 不正

Magnetic fields in Clusters of Galaxies

The Coma galaxy cluster:

- High energy γ-rays (> TeV) cannot propagate over cosmological distances ⇒ Interact with extragalactic background light
 - \implies create e^{\pm} pairs
 - \implies secondary cascade of lower energy γ -rays
 - ► No *B*-fields flux of secondary cascade contributes to primary flux
 - With *B*-fields extended emission and even non-observations of secondaries
- Deflection depends on field strength and coherence length.
- Fermi non-observations of GeV γ -rays from distant blazars imply intergalactic $B \gtrsim 10^{-7}$ nG (λ_c dependent)

Extragalactic magnetic fields (Neronov and Vovk 2010)

Extragalactic magnetic fields (Neronov and Vovk 2010)

Converts turbulent kinetic energy into magnetic energy

Large-scale dynamo:

Galaxy differential rotation

 $\begin{array}{ll} B_{\text{seed}} \sim 10^{-30} \; \text{G} & \Longrightarrow \underset{\tiny (Davis \; et \; al. \; 1999)}{B} \sim \mu \text{G} \\ \rhd \; \text{difficult to explain strong fields} \\ \text{in other types of galaxies, young galaxies,} \\ \text{clusters, and in the voids} \end{array}$

Small-scale dynamo:

● Structure formation: ▷ gravitational collapse, accretion, and supernovae explosions

< ロ ト < 同 ト < 三 ト < 三 ト

Amplification of magnetic fields from turbulence

 $\langle B^2
angle \propto \exp\left(2\Gamma t
ight)$

Requires turbulence:

Reynolds number: $R_e = \frac{v(l)l}{\nu} \gg 1$ MHD: $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} - (\mathbf{v}_A \cdot \nabla)\mathbf{v}_A = \nu \nabla^2 \mathbf{v}$ Spectrum: $v(l) \propto l^\vartheta$ $1/3 \leq \vartheta \leq 1/2$

イロト イ通ト イヨト イヨト

(incompressible)

(highly compressible)

Sac

Amplification of magnetic fields from turbulence

 $\langle B^2
angle \propto \exp\left(2\Gamma t
ight)$

Requires turbulence:

Reynolds number: $R_e = \frac{v(l)l}{\nu} \gg 1$ MHD: $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} - (\mathbf{v}_A \cdot \nabla)\mathbf{v}_A = \nu \nabla^2 \mathbf{v}$ Spectrum: $v(l) \propto l^{\vartheta}$ $1/3 \leq \vartheta \leq 1/2$ Kolmogressible)

イロト イ通ト イヨト イヨト

Amplification of magnetic fields from turbulence

 $\langle B^2
angle \propto \exp\left(2\Gamma t
ight)$

Requires turbulence:

Reynolds number: $R_e = \frac{v(l)l}{v} \gg 1$ MHD: $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - (\mathbf{v}_{\mathcal{A}} \cdot \nabla) \mathbf{v}_{\mathcal{A}} = \nu \nabla^2 \mathbf{v}$ Spectrum: $v(I) \propto I^{\vartheta}$ $1/3 \leqslant \vartheta \leqslant 1/2$ Kolmogorov $\leqslant \vartheta \leqslant \frac{\mathsf{Burgers}}{\mathsf{(highly compressible)}}$ (highly compressible) Bruxelles 2014 10/33

Amplification of magnetic fields from turbulence

 $\langle B^2
angle \propto \exp\left(2\Gamma t
ight)$

Requires $R_m > R_m^{cr}$: Magnetic Reynolds no.: $R_m = \frac{v(l)l}{n}$

$$\begin{array}{l} \mathsf{MHD:} \\ \frac{\partial \mathbf{v}_{\mathcal{A}}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}_{\mathcal{A}} - (\mathbf{v}_{\mathcal{A}} \cdot \nabla) \mathbf{v} = \eta \nabla^2 \mathbf{v}_{\mathcal{A}} \end{array}$$

Spectrum: $v(I) \propto I^{\vartheta}$ $60 \leq R_m^{cr} \leq 2700$ Kolmogorov $\leq R_m^{cr} \leq$ Burgers (incompressible) (incompressible) Universität Hamburg Der roborume Lote Lines Lines

Amplification of magnetic fields from turbulence

 $\langle B^2
angle \propto \exp\left(2\Gamma t
ight)$

Depends on environment:

Prandtl: $P_m \equiv R_m/R_e = \nu/\eta$

Grows on eddy-turnover time scale $\tau_{\rm eddy} = I/v$

Growth rate Γ depends on the kinetic Reynolds number

$$\textit{\textit{R}}_{\textit{e}} = au_{\rm diss}/ au_{
m eddy} = \textit{vl}/
u$$

Universität Hamburg

Simulations of the small-scale dynamo (Schekochihin et al. 2004)

Wagstaff, Banerjee, Schleicher and Sigl

Bruxelles 2014 13 / 33

Sac

The small-scale dynamo - analytic model

The Kazantsev model (Kazantsev 1967, Subramanian 1997, Brandenburg&Subramanian 2005)

Decompose:

$$m{B} = \langle m{B}
angle + \delta m{B}$$
 $m{v} = \langle m{v}
angle + \delta m{v}$

Velocity spectrum:

$$\langle \delta v_i(\mathbf{r}_1, t_1) \delta v_j(\mathbf{r}_2, t_2) \rangle = T_{ij}(\mathbf{r}) \delta(t_1 - t_2)$$

Assumptions:

- Gaussian
- Homogeneous and Isotropic in space
- Instantaneously correlated in time

$$\langle \delta B_i(\boldsymbol{r}_1,t) \delta B_j(\boldsymbol{r}_2,t) \rangle = M_{ij}(r,t)$$

 \Rightarrow Induction equation \Rightarrow Stochastic differential equation \Rightarrow Stochastic differential equation

Bruxelles 2014

14/33

The small-scale dynamo - Analytic model

The Kazantsev model (Kazantsev 1967, Subramanian 1997, Brandenburg&Subramanian 2005)

Kazantsev equation: Schrödinger equation-like equation:

$$\frac{\partial \Psi}{\partial t} = -\hat{H}\Psi$$
 where

$$\left(\begin{array}{c} T_{ij}(r) \implies U(r) \\ \Psi(t) \implies M_{ij}(t) \end{array} \right)$$

Find solution for fluctuating field:

 $\langle B^2
angle \propto \exp(2\Gamma t)$

General types of turbulence: $v(I) \propto I^{\vartheta}$ and $P_m = \nu/\eta \gg 1$

 $\Gamma = rac{(163-304artheta)}{60} R_e^{(1-artheta)/(1+artheta)}/ au_{ ext{eddy}}$ (Schober et

Velocity spectrum modelled so that: (Schober et al. 2012)

• if $\vartheta = 1/3$ Kolmogorov turbulence (incompressible)

• if $\vartheta = 1/2$ Burgers turbulence (highly compressible)

Wagstaff, Banerjee, Schleicher and Sigl

イロト イポト イヨト イヨト

The small-scale dynamo - Analytic model

The Kazantsev model (Kazantsev 1967, Subramanian 1997, Brandenburg&Subramanian 2005)

Kazantsev equation: Schrödinger equation-like equation:

$$\frac{\partial \Psi}{\partial t} = -\hat{H}\Psi$$
 where

$$\begin{cases} T_{ij}(r) \implies U(r) \\ \Psi(t) \implies M_{ij}(t) \end{cases}$$

Find solution for fluctuating field:

 $\langle B^2
angle \propto \exp(2\Gamma t)$

General types of turbulence: $v(I) \propto I^{\vartheta}$ and $P_m = \nu/\eta \gg 1$

 $\Gamma = rac{(163-304artheta)}{60} R_e^{(1-artheta)/(1+artheta)}/ au_{ ext{eddy}}$ (Schober et al. 2012)

Velocity spectrum modelled so that: (Schober et al. 2012)

- if $\vartheta = 1/3$ Kolmogorov turbulence (incompressible)
- if $\vartheta = 1/2$ Burgers turbulence (highly compressible)

イロト イポト イラト イラ

The small-scale dynamo

The SSD mechanism requires turbulence

Turbulence driven by: gravitational collapse, accretion and Supernovae explosions

- First stars (e.g. Schleicher et al. 2010)
- First galaxies (e.g. Schober et al. 2012)
- Clusters of Galaxies (Subramanian et al. 2012)

What about before structure formation?

- Turbulence from primordial density perturbations
- Turbulence injected during first-order phase transitions

Universität Hamburg

Turbulence from primordial density perturbations

Cosmological perturbations (Kodama&Sasaki 1984)

The primordial density perturbations generate velocity fluctuations

• Fluid 3-velocity perturbations:

$$oldsymbol{v}(oldsymbol{k},\eta) = -rac{ioldsymbol{k}}{2\mathcal{H}^2} \left[\Phi'(oldsymbol{k},\eta) + \mathcal{H}\Phi(oldsymbol{k},\eta)
ight]$$

$$oldsymbol{v}(oldsymbol{k},\eta)=-irac{3\sqrt{3}}{2}oldsymbol{\hat{k}}\left[\sin(k\eta/\sqrt{3})-2j_1(k\eta/\sqrt{3})
ight]\Phi_0(k)$$

At linear order in Φ , turbulent velocity is purely irrotational v_{\parallel}

$$\mathcal{P}_{v}(k) = rac{27}{4} \left[\sin(k\eta/\sqrt{3}) - 2j_{1}(k\eta/\sqrt{3}) \right]^{2} \mathcal{P}_{\Phi_{0}}(k)$$

ER FORSCHUNG I DER LEHRE I DER BILDUNG

< 回 ト < 三 ト < 三

Velocity perturbations in the radiation era

Spectrum of velocity perturbations at $T \simeq 0.2$ GeV (neutrino era)

Turbulence from first-order phase transitions

(Steinhardt 1982, Kamionkowski et al. 1994, Kosowsky et al. 2002)

- Bubbles of new phase collide and merge injecting large kinetic energy into plasma.
- Phase boundary propagate via *detonations* which can be modelled analytically.

$$V_L^{\rm rms} \sim \sqrt{\alpha \kappa}$$

α = ρ_{vac}/ρ_{thermal} - Strength of phase transition, α ~ (10⁻⁵ - 10⁻¹)
 κ(α) = ρ_{kin}/ρ_{vac} - Vacuum energy converted to kinetic energy

$$v_L^{\rm rms} \sim (10^{-4}-10^{-1}) {\rm c}$$

イロト イポト イヨト イヨト

Bruxelles 2014

19/33

Stirring scale L_c limited by Hubble horizon size at the time of PT:

• $1/aH|_{QCD} \sim 0.1 \text{ pc}$

•
$$1/aH|_{\rm EW} \sim 10^{-4}~{
m pc}$$

Turbulence in the radiation era

Transition to turbulence

Injection of kinetic energy \implies Large enough $R_e \gg 1 \implies$ Turbulence

$${\mathcal R}_{e}(L_{c})\simeq 8rac{
u(L_{c})L_{c}}{l_{\mathrm{mfp},c}^{
u,\gamma}}\gg 1\ ,\qquad au_{\mathrm{eddy}}=rac{aL_{c}}{
u(L_{c})}$$

With the expansion R_e decreases and τ_{eddy} increases.

- Turbulence due to neutrinos ν , $R_e \gg 1$ The neutrino era
- Viscous regime, $R_e < 1$
- Neutrinos decoupling at $T \simeq 2.6$ MeV
- Turbulence due to photons γ , $R_e \gg 1$ The photon era
- e^{\pm} annihilation from $m_e\gtrsim T\gtrsim$ 20 keV
- Viscous regime, $R_e < 1$

ER FORSCHUNG I DER LEHRE I DER BILDUNG

500

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Turbulence in the radiation era

Transition to turbulence

Injection of kinetic energy \implies Large enough $R_e \gg 1 \implies$ Turbulence

$${\cal R}_{e}(L_{c})\simeq 8rac{v(L_{c})L_{c}}{l_{
m mfp,c}^{
u,\gamma}}\gg 1\ ,\qquad au_{
m eddy}=rac{aL_{c}}{v(L_{c})}$$

With the expansion R_e decreases and τ_{eddy} increases.

- Turbulence due to neutrinos ν , $R_e \gg 1$ The neutrino era
- Viscous regime, R_e < 1
- Neutrinos decoupling at T ~ 2.6 MeV
- Turbulence due to photons γ , $R_e \gg 1$ The photon era
- e^{\pm} annihilation from $m_e \gtrsim T \gtrsim$ 20 keV
- Viscous regime, $R_e < 1$

DER FORSCHUNG | DER LEHRE | DER BILDUNG

500

イロト イポト イヨト イヨト 二日

The excited scales

Conditions:

Coherence length Many turnover times Highly turbulent

Bruxelles 2014

21/33

hence

$$R_e^{
m cr} l_c^{\gamma}/v \lesssim L_c \lesssim v H^{-1}/a$$

Silk damping scale:

$$l_D^2 = \int \frac{l_c^{\gamma}}{a} dt \implies v \propto e^{-(l_D(t)/l)^2}$$

Dissipation of small-scale perturbations caused by γ random we kisted hambur out of overdense regions.

The excited scales

Conditions:

$$egin{aligned} & L_c < I_H = 4 H^{-1}/a \ & & au_{ ext{eddy}} = a L_c/v < H^{-1} \ & & R_e > R_e^{ ext{cr}} \sim (10^2 - 10^3) \end{aligned}$$

Coherence length Many turnover times Highly turbulent

.

Bruxelles 2014

21/33

hence

$$R_e^{
m cr} l_c^\gamma / v \lesssim L_c \lesssim v H^{-1} / a$$

Silk damping scale:

$$l_D^2 = \int \frac{l_c^{\gamma}}{a} \,\mathrm{d}t \qquad \Longrightarrow \qquad \mathbf{v} \propto \mathbf{e}^{-(l_D(t)/l)^2}$$

Dissipation of small-scale perturbations caused by γ random walking tamburg out of overdense regions.

The excited scales

The excited scales

The neutrino era: 2.6 MeV $\lesssim T \lesssim 100$ GeV

The Reynolds number

Wagstaff, Banerjee, Schleicher and Sigl

Bruxelles 2014 24 / 33

Magnetic field amplification

Estimate the growth rate from the Kazantsev model:

 $\langle B^2
angle \propto \exp(2\Gamma t)$

Turbulence with spectrum: $v(I) \propto I^{\vartheta}$ and $P_m \gg 1$ (Kolmogorov: $\vartheta = 1/3$), (Burgers: $\vartheta = 1/2$)

$$\Gamma=rac{(163-304artheta)}{60}R_{e}^{(1-artheta)/(1+artheta)}/ au_{ ext{eddy}}$$
 (Schober et al. 2012)

Large amplification factor in very short time!

$$N \equiv \int \Gamma(t) \mathrm{d}t \qquad \longrightarrow \qquad \langle B^2
angle \propto e^{2N}$$

25/33

Bruxelles 2014

イロト イポト イヨト イヨト

Magnetic field amplification The Growth Rate

Magnetic field saturation (Schekochihin et al. 2004, Federrath et al. 2011)

Saturation given by equipartition of magnetic and kinetic energy

Universität Hamburg

Wagstaff, Banerjee, Schleicher and Sigl

Bruxelles 2014 27 / 33

Magnetic field saturation (Schekochihin et al. 2004, Federrath et al. 2011)

Saturation given by equipartition of magnetic and kinetic energy

The SSD mechanism can amplify to saturation tiny seed fields

$$B_0^{\text{seed}} \simeq (10^{-30} - 10^{-20}) \text{ nG}$$

Turbulence generated by primordial density perturbations:

$$a^2 B_{\rm rms} \sim 1 \varepsilon^{\frac{1}{2}} \, {\rm nG}$$
 on scales up to $\lambda_c \sim 10^{-5} \, {\rm pc}$

Turbulence generated by first-order phase transitions:

$$a^2 B_{\rm rms} \sim (10^{-3} - 1) \varepsilon^{\frac{1}{2}} \mu G$$
 on scales $\lambda_c \sim (10^{-4} - 10^{-1}) \, {\rm pc}$

Universität Hamburg

29/33

Bruxelles 2014

< ロ ト < 同 ト < 三 ト < 三 ト

Subsequent evolution of magnetic fields (Durrer&Neronov 2013)

MHD turbulence decay

Turbulence generated by primordial density perturbations:

$$B_0^{\rm rms} \sim 10^{-6} \varepsilon^{\frac{1}{2}} \, {\rm nG}$$
 on scales up to $\lambda_c \sim 10^{-1} \, {\rm pc}$

Too weak on too short scales to explain observed intergalactic magnetic fields

Turbulence generated by first-order phase transitions:

$$B_0^{\rm rms} \sim (10^{-6} - 10^{-3}) \varepsilon^{\frac{1}{2}} \, {\rm nG}$$
 on scales $\lambda_c \sim (10^{-1} - 10^2) \, {\rm pc}$

Strong enough to explain observed intergalactic magnetic fields

Intergalactic magnetic fields (Neronov and Vovk 2010)

Summary

The small-scale dynamo in the radiation era

- Before structure formation the SSD can be effective at amplifying magnetic seed fields.
- Kinetic energy generated by primordial density perturbations and first-order phase transitions
- Fully developed turbulence is expected on scales $I_D \lesssim L_c \lesssim I_e$ where $R_e \gg 1$, many eddy-interactions and no damping
- Identified epoch in RD in which conditions are good for SSD
- Kazantsev model gives large growth rate of seed field: $\Gamma \propto R_e^{1/2}$
- For seed fields $10^{-30} \lesssim B_0^{seed}/nG \lesssim 10^{-20}$ magnetic energy saturates rapidly to:

$$B_0 \approx 10^{-3} \varepsilon^{1/2}$$
 nG on scales up to $\lambda_c \sim 100$ pc

• These strong extragalactic fields can explain Fermi observations

Bruxelles 2014

33/33

Provide initial magnetic fields for structure formation

• Other observable signatures?