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The case for dark matter

Most economical explanation of:
» The rate of expansion of the universe.
» The formation of large scale structure.
» The dynamics of galaxies, clusters, ...



The case for dark matter

Most economical explanation of:
» The rate of expansion of the universe.
» The formation of large scale structure.
» The dynamics of galaxies, clusters, ...
Expected in natural extensions of the SM.
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An example: WIMPs

Similar to a heavy neutrino, m, ~ 100 GeV, weak-scale
interactions produce observed abundance from thermal

decoupling:

=< oV>~3x106 cmds !

The same interactions make it potentially detectable:
> XX — Y, 7'('0, ei,...
» xN — xN

Other examples include axions, MeV particles, ...



Indirect detection

< ov >dN. e
Fux = ~7V=9% / Al
47dem dE’y 0

S—— e
Number of SM particles ~ Amount of DM?

» Astrophysical factor suggests looking at GC, dwarf
spheroidals, ...

» Photons and neutrinos point back to the source, while
charged particles diffuse.



The distribution of DM: simulations

1 billion 4,100 Mg, particles. 0.5 kpc in the host halo.
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The distribution of DM: observations

Jeans’ equation shows that M/L ~ 1000. Clean systems.
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The central supermassive black hole

» Will focus on the super-massive BH at the center of the
Galaxy.

» Similar effects will occur in the cores of AGNSs, or in IMBHs.
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The central supermassive black hole
We will assume that a black hole of mass 4 x 108 M, grows
adiabatically over ~ 10'%yr.
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The central supermassive black hole
We will assume that a black hole of mass 4 x 108 M, grows
adiabatically over ~ 10'%yr.
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Is the growth adiabatic?

» Growth time

MEgga
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Is the growth adiabatic?

» Growth time

» Dynamical time \

I'n m
— <<
o MEgga

Gm
Ih =~ o2 — layn = 1O4yr < ISalpeter ~ S X 107yr

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic
heating of DM by stars, ...



Growing a BH: Newtonian analysis

We are interested in the DM density:
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Growing a BH: Newtonian analysis

We are interested in the DM density:

:/f(E, L)d®v
f(E,L)
_4/dE/LdL/dLZ AT VT sing
_47r/dE/LdL f|L|)
r

The limits of integration are set by the requirements:
> v, = (RE—20—L%/r?)"/?real = 0 < L < [2r?(E — ®)]"/2.
» DM particle is bound to the halo = ¢(r) < E < 0.

Take into account particles trapped inside the event horizon by
modifying boundary conditions in an ad hoc manner: L > 2cRs.




Growing a BH: Newtonian analysis

Each particle in an initial DM distribution f(E, L), will react to
the change in ® caused by the growth of the BH by altering its
E, L and L,. However, the adiabatic invariants remain fixed:
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W(ls) = f Vodg — f Lodo = 2L, (1)




Growing a BH: Newtonian analysis

Each particle in an initial DM distribution f(E, L), will react to
the change in ® caused by the growth of the BH by altering its
E, L and L,. However, the adiabatic invariants remain fixed:

WE,L) = %v,dr— jédr\/QE—Zcb— 1272

(L L) = fvede = fdm/ﬂ —12sin2¢ =2r(L— Ly),

W(ls) = f Vodg — f Lodo = 2L, (1)

The shape of the distribution function is also invariant,
f(E,L)=f(E'(E,L),L).



Newtonian BH

For a Newtonian point mass,

I(E, L) =2r <—L + %)

And we can find the final DM density in the form:

0 Linax "E'(E.L). L
p(r):‘::/ dE/ ta.—LEEDD
—Gm/r - Jo V2E +2Gm/r — [2]r

Young 80, Quinlan et al. 95, Gondolo & Silk 95



Growing a BH: Relativistic analysis
1. Generalize the definition of density:

/f Fd“p,

2. Use relativistic expressions to write it in terms of the
invariants of motion (energy, angular momentum, ....).
3. Use relativistic expressions for the actions.



Growing a BH: Relativistic analysis
1. Generalize the definition of density:

/f Fd“p,

2. Use relativistic expressions to write it in terms of the
invariants of motion (energy, angular momentum, ....).
3. Use relativistic expressions for the actions.

For Kerr:
£ = —uy=—goot® — 90¢>U¢v (2)
Ly = uy=gost® + gyst?, ®
C = T4(u)® +sin20L2 + & cos? (1 — £2), (4)
gup'p’ = . .

And need to calculate the jacobian

“p = |J|7'dEdCdL,dp



Example: Schwarzschild BH

The positivity of the radial action determines the boundary
conditions, including the effects of the horizon.
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Example: Schwarzschild BH

For a constant phase-space distribution:

1.0 = T T T

T
Fully relativistic
— — = Gondolo & Silk
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Example: Schwarzschild BH

For a, more realistic, cuspy DM distribution:

logyg (p [GeV/cm?))

— Relativistic

— — Non-relativistic

""" DM annihilation

Initial Hernquist profile

3 4 E 6
logyo (r/Rs)



Consequences

The gravitational potential is still dominated by the BH:

logy (m(r)/Ms)

10 e —— 1o annihilation

— — with annihilation

_12 Il Il Il
0 1 2 3 4

logy (r/Rs)




Consequences

No big changes for DM annihilation, but precession rates could
be observable.

al "~ i ]
10 . ADM non—ann [§
‘ ADM,ann
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Precession rate [arcmin/yr]

Semi-major axis [mpc]



Indirect detection

< ov >dN. e
Fux = ~7V=9% / Al
47dem dE’y 0

S—— e
Number of SM particles ~ Amount of DM?

» Astrophysical factor suggests looking at GC, dwarf
spheroidals, ...

» Photons and neutrinos point back to the source, while
charged particles diffuse.



The annihilation cross-section

Annihilations in the halo are non-relativistic, v ~ 1073,
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Annihilations in the halo are non-relativistic, v ~ 1073,
The amplitude is analytical for k — 0
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Including factors of k' Y/” in a partial wave expansion, o o k2~
f



The annihilation cross-section

Annihilations in the halo are non-relativistic, v ~ 1073,
The amplitude is analytical for k — 0

M x / ™ Viorn(X)
Including factors of k' Y/™ in a partial wave expansion, o o« k2~
g /

ov=a+bv®+...



More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
velocities:
T
g — o0 X 7
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If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
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More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
velocities:
T
g — o0 X 7

If annihilation proceeds near a resonant state,

1

Vo x 5 5 > 5
(ve/4 +A)" +T5(1 —A)/4mx

Enhancements at low velocities, v ~ 1073, different than at
decoupling.



Substructure enhanced

Lattanzi & Silk
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Substructure enhanced

Lattanzi & Silk

DA



What went in calculating the flux?

The averaged cross-section

(ov) = S(v){ov)
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What went in calculating the flux?

The averaged cross-section
(ov) = S(v){ov)

But, the flux is
& = Rate X Vg

We have to average this, using the dark matter velocity
distribution.



How should we calculate the fluxes?

Flux o / dVreldllosfpair(r s Vrel) X 0Vl



How should we calculate the fluxes?

Flux o / dVre/dllosfpair(r s Vrel) X 0Vl

The usual approach assumes

fpair(ra Vrel) = p2(r) x fus(Vrer)

See Robertson & Zentner for an approximate Jeans’ based analysis



Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Halo restframe Earth restframe (Summer)
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Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Halo restframe Earth restframe (Summer)
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Kuhlen et al.



Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,
df
i
Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, ...).

0



Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,
df
i
Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, ...).
Taking velocity moments we obtain the Jeans’ equation:

GM(r) - (dlogv  dlog v?
2 _ _ 42 r
Vo=~ Vr(dlogr dlogr 20

0

Necessary condition, useful to obtain density profiles from
observational data.



Eddington’s formula

Gives the phase space distribution, if we know the density

profile:
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Given a profile (NFW, cored, ...) we obtain the phase space
distribution, which provides a full description of the dark matter
distribution.




Eddington’s formula

Gives the phase space distribution, if we know the density

profile:
1 £ dv  d%)
f(&) = —=. 6
©) @WZ/O VE— W du? ©

Given a profile (NFW, cored, ...) we obtain the phase space
distribution, which provides a full description of the dark matter
distribution.

Check that p(r) = / d3v £(€).




The phase-space distribution
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Deriving the velocity distribution

Now that we have the full distribution function, we can find the
velocity distribution at each point:

f(y—v2/2)

A= p(¥)



Deriving the velocity distribution

Now that we have the full distribution function, we can find the
velocity distribution at each point:

f(y—v2/2)

A= p(¥)

Check that /P(v)dv =1.



Velocity distribution
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Obtaining the relative velocity distribution

We move to the CM, to obtain Pyg (Vye):

fs (V1)fsp(92)dv1dv2 = fpair(vcm7 Vrel)dvcmdvrel- (7)
fro(Vie) —47rVr2;127r/ dvcmvfm/ dé sin(6)
0 0
fp <\/Vr261/4 + Vén + Vil Vem 003(9)> (8)

fp (\/Vrzel/4 + V2, — VielVem cos(@)) :



Obtaining the relative velocity distribution

We move to the CM, to obtain Pyg (Vye):
fip (V1) fip (Vo) dV1dVa = foie(Vem, Viel)dVemd Vel (7)
fro(Viel) = 47V2 21 /OOO dVem V2, /07r dé sin()
o <\/ 2 /4 + V2, + VielVem cos(9)> (8)
-fp <\/ rel/4 + V2 — VielVem cos(@)) .

Recover the standard results for a Maxwell-Boltzmann
distribution.




Relative velocity distribution
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Fluxes

We have all the ingredients to perform the los integration:

Flux o / AVyerliospair (7', Vrel) X 0 Vrel



Fluxes

We have all the ingredients to perform the los integration:

Flux o / AVyerliospair (7', Vrel) X 0 Vrel

Or a volume integration, if we are interested in e yields in the
center of the galaxy.



Boost factor
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Enhancements up to 1000!



Conclusions

» A full general relativistic treatment shows significant
deviations of the DM distribution around a black hole. They
could affect tests of no-hair theorems.

» Gamma-ray and neutrino fluxes might depend on the
velocity distribution, which generically deviates from the
naive Maxwell-Boltzmann approximation.

» Using the full phase space distribution from the Eddington
inversion suggests that fluxes from the center of the halo
are up to 10° times larger.

» Constraints on Sommerfeld enhanced models from IC,
synchroton or diffuse backgrounds might have to be
re-evaluated.

» The velocity distribution also affects direct detection rates.
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