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The case for dark matter

Most economical explanation of:
I The rate of expansion of the universe.
I The formation of large scale structure.
I The dynamics of galaxies, clusters, . . .

Expected in natural extensions of the SM.
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An example: WIMPs

Similar to a heavy neutrino, mχ ≈ 100 GeV, weak-scale
interactions produce observed abundance from thermal
decoupling:

⇒< σv >≈ 3× 10−26 cm3 s−1

The same interactions make it potentially detectable:
I χχ→ γγ, π0, e±, . . .
I χN → χN

Other examples include axions, MeV particles, . . .
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Indirect detection

Flux =
< σv >
4πm2

dm

dNγ

dEγ︸ ︷︷ ︸
Number of SM particles

×
∫ ∞

0
ρ2(r)dl

︸ ︷︷ ︸
Amount of DM2

I Astrophysical factor suggests looking at GC, dwarf
spheroidals, . . .

I Photons and neutrinos point back to the source, while
charged particles diffuse.



The distribution of DM: simulations

1 billion 4,100 M� particles. 0.5 kpc in the host halo.







The distribution of DM: observations

Jeans’ equation shows that M/L ∼ 1000. Clean systems.







The central supermassive black hole

I Will focus on the super-massive BH at the center of the
Galaxy.

I Similar effects will occur in the cores of AGNs, or in IMBHs.



The central supermassive black hole
We will assume that a black hole of mass 4× 106M� grows
adiabatically over ∼ 1010yr.
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Is the growth adiabatic?

I Growth time
I Dynamical time

rh

σ
≤ m

ṁEdd

rh ≈
Gm
σ2 → tdyn ≈ 104yr ≤ tSalpeter ≈ 5× 107yr

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic
heating of DM by stars, . . .
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Growing a BH: Newtonian analysis

We are interested in the DM density:

ρ =

∫
f (E ,L)d3v

= 4
∫

dE
∫

LdL
∫

dLz
f (E ,L)

r4|vr ||vθ| sin θ

= 4π
∫

dE
∫

LdL
f (E ,L)

r2|vr |

The limits of integration are set by the requirements:
I |vr | = (2E −2Φ−L2/r2)1/2 real⇒ 0 ≤ L ≤ [2r2(E −Φ)]1/2.
I DM particle is bound to the halo⇒ Φ(r) ≤ E ≤ 0.

Take into account particles trapped inside the event horizon by
modifying boundary conditions in an ad hoc manner: L ≥ 2cRS.
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Growing a BH: Newtonian analysis

Each particle in an initial DM distribution f (E ,L), will react to
the change in Φ caused by the growth of the BH by altering its
E , L and Lz . However, the adiabatic invariants remain fixed:

Ir (E ,L) ≡
∮

vr dr =

∮
dr
√

2E − 2Φ− L2/r2 ,

Iθ(L,Lz) ≡
∮

vθdθ =

∮
dθ
√

L2 − L2
z sin−2 θ = 2π(L− Lz) ,

Iφ(Lz) ≡
∮

vφdφ =

∮
Lzdφ = 2πLz . (1)

The shape of the distribution function is also invariant,
f (E ,L) = f ′(E ′(E ,L),L).
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Newtonian BH

For a Newtonian point mass,

Ir (E , L) = 2π
(
−L +

Gm√
−2E

)

And we can find the final DM density in the form:

ρ(r) =
4π
r2

∫ 0

−Gm/r
dE
∫ Lmax

0
LdL

f ′(E ′(E ,L),L)√
2E + 2Gm/r − L2/r2

Young 80, Quinlan et al. 95, Gondolo & Silk 95



Growing a BH: Relativistic analysis
1. Generalize the definition of density:

Jµ(x) ≡
∫

f (4)(p)
pµ

µ

√−g d4p ,

2. Use relativistic expressions to write it in terms of the
invariants of motion (energy, angular momentum, . . . ).

3. Use relativistic expressions for the actions.

For Kerr:

E ≡ −u0 = −g00u0 − g0φuφ , (2)
Lz ≡ uφ = g0φu0 + gφφuφ , (3)

C ≡ Σ4(uθ
)2

+ sin−2 θL2
z + a2 cos2 θ(1− E2) , (4)

gµνpµpν = −µ2 . (5)

And need to calculate the jacobian

d4p = |J|−1dEdCdLzdµ
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Example: Schwarzschild BH

The positivity of the radial action determines the boundary
conditions, including the effects of the horizon.
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Example: Schwarzschild BH

For a constant phase-space distribution:
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Example: Schwarzschild BH

For a, more realistic, cuspy DM distribution:
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Consequences

The gravitational potential is still dominated by the BH:
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Consequences

No big changes for DM annihilation, but precession rates could
be observable.
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Indirect detection

Flux =
< σv >
4πm2

dm

dNγ

dEγ︸ ︷︷ ︸
Number of SM particles

×
∫ ∞

0
ρ2(r)dl

︸ ︷︷ ︸
Amount of DM2

I Astrophysical factor suggests looking at GC, dwarf
spheroidals, . . .

I Photons and neutrinos point back to the source, while
charged particles diffuse.



The annihilation cross-section

Annihilations in the halo are non-relativistic, v ≈ 10−3.
The amplitude is analytical for k → 0

M∝
∫

eikxVBorn(x)

Including factors of k lY m
l in a partial wave expansion, σ ∝ k2l−1

σv = a + bv2 + . . .
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More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
velocities:

σ → σ × πα

v
If annihilation proceeds near a resonant state,

vσ ∝ 1

(v2/4 + ∆)
2

+ Γ2
A(1−∆)/4m2

χ

Enhancements at low velocities, v ∼ 10−3, different than at
decoupling.
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What went in calculating the flux?

The averaged cross-section

〈σv〉 → S(v)〈σv〉

But, the flux is
Φ = Rate × vrel

We have to average this, using the dark matter velocity
distribution.
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How should we calculate the fluxes?

Flux ∝
∫

dvreldllosfpair (r , vrel)× σvrel

The usual approach assumes

fpair (r , vrel) = ρ2(r)× fMB(vrel)

See Robertson & Zentner for an approximate Jeans’ based analysis
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Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Kuhlen et al.
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Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,

df
dt

= 0

Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, . . . ).
Taking velocity moments we obtain the Jeans’ equation:

v2
c =

GM(r)

r
= −v̄2

r

(
d log ν
d log r

+
d log v̄2

r

d log r
+ 2β

)
.

Necessary condition, useful to obtain density profiles from
observational data.
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Eddington’s formula

Gives the phase space distribution, if we know the density
profile:

f (E) =
1√
8π2

∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2 . (6)

Given a profile (NFW, cored, . . . ) we obtain the phase space
distribution, which provides a full description of the dark matter
distribution.
Check that ρ(r) ≡

∫
d3v f (E).
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The phase-space distribution
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Deriving the velocity distribution

Now that we have the full distribution function, we can find the
velocity distribution at each point:

P(v) =
f
(
ψ − v2/2

)

ρ(ψ)

Check that
∫

P(v)dv = 1.



Deriving the velocity distribution

Now that we have the full distribution function, we can find the
velocity distribution at each point:

P(v) =
f
(
ψ − v2/2

)

ρ(ψ)

Check that
∫

P(v)dv = 1.



Velocity distribution
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Obtaining the relative velocity distribution

We move to the CM, to obtain Prel (vrel):

fsp(~v1)fsp(~v2)d~v1d~v2 = fpair(~vcm, ~vrel)d~vcmd~vrel. (7)

frv(vrel) = 4πv2
rel2π

∫ ∞

0
dvcmv2

cm

∫ π

0
dθ sin(θ)

· fsp

(√
v2

rel/4 + v2
cm + vrelvcm cos(θ)

)

· fsp

(√
v2

rel/4 + v2
cm − vrelvcm cos(θ)

)
.

(8)

Recover the standard results for a Maxwell-Boltzmann
distribution.
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Relative velocity distribution
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Fluxes

We have all the ingredients to perform the los integration:

Flux ∝
∫

dvreldllosfpair (r , vrel)× σvrel

Or a volume integration, if we are interested in e± yields in the
center of the galaxy.
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Boost factor
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Enhancements up to 1000!



Conclusions

I A full general relativistic treatment shows significant
deviations of the DM distribution around a black hole. They
could affect tests of no-hair theorems.

I Gamma-ray and neutrino fluxes might depend on the
velocity distribution, which generically deviates from the
naive Maxwell-Boltzmann approximation.

I Using the full phase space distribution from the Eddington
inversion suggests that fluxes from the center of the halo
are up to 103 times larger.

I Constraints on Sommerfeld enhanced models from IC,
synchroton or diffuse backgrounds might have to be
re-evaluated.

I The velocity distribution also affects direct detection rates.
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