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New phenomenology group
at the VUB since 2010/Oct.

• A 5-year GOA (Geconcentreerde Onderzoeksactie) project 
on “Supersymmetric models and their signatures at the LHC”

• Ben Craps, Alexander Sevrin, Alberto Mariotti (theory)
- F. 9th floor

• Catherine De Clercq, Jorgen D’Hondt (experiment)
- G. 0th and 1st floor

• Fabio Maltoni (pheno) - CP3/UCL

• The main goal of the project is

• to establish a complete chain from fundamental theory 
to experiment.

• to use this chain to study possible signatures of SUSY 
models at the LHC.

• The phenomenology members

• Kentarou Mawatari (from U. Heidelberg) -Project leader

• Phillip Grajek (from KEK, Japan) -PD

• Bettina Oexl (from U. Tuebingen) -PhD

• Contact to

• http://we.vub.ac.be/dntk/onderzoek/GOAindex.htm

• pheno@vub.ac.be
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Motivation
❑ Evidence for dark matter (DM)
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1 Introduction

The presence of cold dark matter (CDM) in our Universe is now well established by a

number of observational experiments, especially the very precise measurement of the cosmic

microwave background radiation in the Wilkinson Microwave Anisotropy Probe (WMAP)

experiment [1]. The measured value of the CDM relic density is

ΩCDM h2 = 0.1099 ± 0.0062 ,

where h is the Hubble constant in units of 100 km/Mpc/s. Though the gravitation nature

of the dark matter is established, we know almost nothing about the particle nature, except

that it is, to a high extent, electrically neutral.

One of the most appealing and natural CDM particle candidates is weakly-interacting

massive particle (WIMP). It is a coincidence that if the dark matter is produced thermally

in the early Universe, the required annihilation cross section is right at the order of weak

interaction. The relation between the relic density and the thermal annihilation cross

section can be given by the following simple formula [2]

Ωχh2 !
0.1 pb

〈σv〉
, (1.1)

where 〈σv〉 is the annihilation rate of the dark matter around the time of freeze-out. Given

the measured ΩCDMh2 the annihilation rate is about 1 pb or 10−26 cm3 s−1. This is exactly

the size of the cross sections that one expects from a weak interaction process and that

would give a large to moderate production rate at the LHC. In general, production of

dark matter at the LHC would give rise to a large missing energy. Thus, the anticipated

signature in the final state is high-pT jets or leptons plus a large missing energy. Note that

there could be non-thermal sources for the dark matter, such as decay from exotic relics

like moduli fields, cosmic strings, etc. In such cases, the annihilation rate in eq. (1.1) can

be larger than the value quoted above.
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CMB, BBN, BAO, rotation curves, etc.

[PDG 2010]
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Figure 21.1: Confidence level contours of 68.3%, 95.4% and 99.7% in the ΩΛ–Ωm
plane from the Cosmic Microwave Background, Baryonic Acoustic Oscillations and
the Union SNe Ia set, as well as their combination (assuming w = −1). [Courtesy
of Kowalski et al. [22]]

Ωm + ΩΛ ≈ 1), the best-fit values are Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the
literature are consistent with Einstein’s w = −1 cosmological constant case.

For example, Kowalski et al. [22] deduced from SNe Ia combined with CMB and

July 30, 2010 14:36
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the measured ΩCDMh2 the annihilation rate is about 1 pb or 10−26 cm3 s−1. This is exactly

the size of the cross sections that one expects from a weak interaction process and that

would give a large to moderate production rate at the LHC. In general, production of

dark matter at the LHC would give rise to a large missing energy. Thus, the anticipated

signature in the final state is high-pT jets or leptons plus a large missing energy. Note that

there could be non-thermal sources for the dark matter, such as decay from exotic relics

like moduli fields, cosmic strings, etc. In such cases, the annihilation rate in eq. (1.1) can

be larger than the value quoted above.
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4

❑ Though the gravitation nature of DM is established, we 
know almost nothing about the particle nature (mass, spin, 
quantum #, interaction) except electrically neutral. 
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What is the relevant energy scale of the DM?

❑ If DM is a WIMP, the relevant scale is the EW scale.
❑ Mass of top quark is also close to the EW scale.

❑ Since top quark and DM have the common energy scale,
there might be some relationship between them.

We consider DM which couples only to the top quark.

EWSBO(100) WIMP

Energy scale [GeV]

top quarkHiggsHiggs WIMPtop quarkEWSB

strong relation?

❑ The top quark might be the only window to probe DM.

5
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Model
dark matter and nuclei.

II. EFFECTIVE INTERACTIONS AND RELIC DENSITY

Our simple model consists of the SM and a hidden sector, in which there is a pair of

Dirac/Majorana fermions and a gauge boson. For some reasons this gauge boson couples

this hidden fermion only to the top quark on the SM side. If the mass of this gauge boson

is heavy enough, we can integrate it out. More generally, below the heavy mass scale Λ the

interaction between the top quark and the dark matter particle, denoted by χ, is given by

L =
g2χ
Λ2

(χΓχ) (t̄Γt) , (2)

where Γ = γµ for a vector gauge boson, Γ = γµγ5 for an axial-vector gauge boson, Γ = 1 (γ5)

for a scalar (pseudoscalar) boson interaction, and Γ = σµν(γ5) with σµν ≡ i(γµγν − γνγµ)/2

for a tensor (axial-tensor) interaction, and gχ is an effective coupling constant. For Majorana

fermions the Γ = γµ or σµν type interaction is identically zero, and so for vector or tensor

type interaction the fermion χ in Eq.(2) must be Dirac. Explicitly, we assume the dark

matter candidate to be Dirac, but the results are also applicable to Majorana dark matter.

With this interaction we can calculate the thermal averaged cross sections and thus the

relic density, the direct and indirect detection rates, and also the production cross section

of pp → tt̄ + χχ at the LHC.

We start with a vector gauge boson type interaction: Γ = γµ. The differential cross

section for χ(p1) χ(p2) → t(k1) t̄(k2), with the 4-momenta listed in the parentheses, is

dσ

dz
=

g4χ
Λ4

NC

16πs

βt

βχ

[

u2
m + t2m + 2s(m2

χ +m2
t )
]

(3)

where NC = 3 for the top quark color, βt,χ = (1 − 4m2
t,χ/s)

1/2, tm = t − m2
χ − m2

t =

−s(1− βtβχz)/2, um = u−m2
χ −m2

t = −s(1 + βtβχz)/2, s = (p1 + p2)2 is the square of the

center-of-mass energy, t = (p1 − k1)2, u = (p1 − k2)2, and z ≡ cosΘ with Θ the scattering

angle. The quantity σv, where v ≈ 2βχ in the non-relativistic limit, can be obtained by

integrating over the variable z in Eq. (3). Instead of solving the Boltzmann equation, we

can naively estimate the size of the interaction by the following equation

Ωχh
2 %

0.1 pb

〈σv〉
. (4)

4

Top-philic Dark Matter∗

Eibun Senaha

August 13, 2010

1 Effective theory of the dark matter

Here, we consider the specific model of the dark matter (DM). The Lagrangian is

Ltχ =
g2

χ

Λ2
(χ̄Γχ)(t̄Γt), (1.1)

where Γ = 1, γ5, γµ, γµγ5, σµν = i[γµ, γν ]/2 and σµνγ5 for scalar, pseudoscalar, vector, axial-
vector, tensor and axial-tensor respectively.

We consider the annihilation processes of the DM, χ(p1)χ̄(p2) → t(k1)t̄(k2). The differential
annihilation cross sections of them in the center-of-mass energy (CM) frame are

(
dσ

dz

)

S

=
NC

32π

g4
χ

Λ4
βχβ3

t s, (1.2)

(
dσ

dz

)

PS

=
NC

32π

g4
χ

Λ4

βt

βχ
s, (1.3)

(
dσ

dz

)

V

=
NC

16πs

g4
χ

Λ4

βt

βχ
s
[
t2m + u2

m + 2s(m2
t + m2

χ)
]
, (1.4)

(
dσ

dz

)

AV

=
NC

16πs

g4
χ

Λ4

βt

βχ
s
[
t2m + u2

m − 2s(m2
t + m2

χ) + 16m2
t m

2
χ

]
, (1.5)

(
dσ

dz

)

T

=
NC

4πs

g4
χ

Λ4

βt

βχ
s
[
− s2 + 2(t2m + u2

m) + 2s(m2
t + m2

χ) + 8m2
t m

2
χ

]
,

(
dσ

dz

)

AT

=

(
dσ

dz

)

T

, (1.6)

where s is the square of the CM energy, z = cos θ and

tm = t − m2
t − m2

χ = −s

2
(1 − βtβχz), (1.7)

um = u − m2
t − m2

χ = −s

2
(1 + βtβχz), (1.8)

βt,χ =

√
1 −

4m2
t,χ

s
, v = 2βχ. (1.9)

∗since March 25, 2010

1

❑ A realization of such a DM can be found in the 
following references.

C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, 0912.0004;
M. Battaglia and G. Servant, 1005.4632.

SM sector
Top quark

Hidden sector
DM fermion

heavy gauge boson

❑ If the mass of the gauge boson is heavy enough, we 
can integrate it out, and below the heavy mass scale Λ 
the effective interaction Lagrangian is given by

6
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Check points
• DM relic abundance?

Thermal production of DM in the early Universe is assumed.

• Direct detection?
The cross section of direct detection would be consistent 
with the current limit since the top content within the 
nucleon is so small.

• Indirect detection?
The annihilation of the DM in the Galactic Halo would give 
rise to positron and antiprotons that can be observed by 
antimatter search experiments.

• Collider experiments?
pp > (t-pair)+(DM-pair) > (t-pair)+(large missing energy)

8
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Relic abundance
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❑ The annihilation cross section

χ

χ̄

t

t̄

p1

p2 k2

k1

Relic abundance

dark matter and nuclei.

II. EFFECTIVE INTERACTIONS AND RELIC DENSITY

Our simple model consists of the SM and a hidden sector, in which there is a pair of

Dirac/Majorana fermions and a gauge boson. For some reasons this gauge boson couples

this hidden fermion only to the top quark on the SM side. If the mass of this gauge boson

is heavy enough, we can integrate it out. More generally, below the heavy mass scale Λ the

interaction between the top quark and the dark matter particle, denoted by χ, is given by

L =
g2χ
Λ2

(χΓχ) (t̄Γt) , (2)

where Γ = γµ for a vector gauge boson, Γ = γµγ5 for an axial-vector gauge boson, Γ = 1 (γ5)

for a scalar (pseudoscalar) boson interaction, and Γ = σµν(γ5) with σµν ≡ i(γµγν − γνγµ)/2

for a tensor (axial-tensor) interaction, and gχ is an effective coupling constant. For Majorana

fermions the Γ = γµ or σµν type interaction is identically zero, and so for vector or tensor

type interaction the fermion χ in Eq.(2) must be Dirac. Explicitly, we assume the dark

matter candidate to be Dirac, but the results are also applicable to Majorana dark matter.

With this interaction we can calculate the thermal averaged cross sections and thus the

relic density, the direct and indirect detection rates, and also the production cross section

of pp → tt̄ + χχ at the LHC.

We start with a vector gauge boson type interaction: Γ = γµ. The differential cross

section for χ(p1) χ(p2) → t(k1) t̄(k2), with the 4-momenta listed in the parentheses, is

dσ

dz
=

g4χ
Λ4

NC

16πs

βt

βχ

[

u2
m + t2m + 2s(m2

χ +m2
t )
]

(3)

where NC = 3 for the top quark color, βt,χ = (1 − 4m2
t,χ/s)

1/2, tm = t − m2
χ − m2

t =

−s(1− βtβχz)/2, um = u−m2
χ −m2

t = −s(1 + βtβχz)/2, s = (p1 + p2)2 is the square of the

center-of-mass energy, t = (p1 − k1)2, u = (p1 − k2)2, and z ≡ cosΘ with Θ the scattering

angle. The quantity σv, where v ≈ 2βχ in the non-relativistic limit, can be obtained by

integrating over the variable z in Eq. (3). Instead of solving the Boltzmann equation, we

can naively estimate the size of the interaction by the following equation

Ωχh
2 %

0.1 pb

〈σv〉
. (4)

4

Therefore, one gets

(σv)S =
NC

8π

g4
χ

Λ4
β2

χβ3
t s, (1.10)

(σv)PS =
NC

8π

g4
χ

Λ4
βts, (1.11)

(σv)V =
NC

8π

g4
χ

Λ4
βts

[
1 +

1

3
β2

t β
2
χ +

4(m2
t + m2

χ)

s

]
, (1.12)

(σv)AV =
NC

8π

g4
χ

Λ4
βts

[
1 +

1

3
β2

t β
2
χ −

4(m2
t + m2

χ)

s
+

32m2
t m

2
χ

s2

]
, (1.13)

(σv)T =
NC

π

g4
χ

Λ4
βts

[
1

3
β2

t β
2
χ +

2(m2
t + m2

χ)

s
+

8m2
t m

2
χ

s2

]
. (1.14)

A Details of the calculations

A.1 cross sections

We calculate the cross section of the process χ(p1)χ̄(p2) → t(k1)t̄(k2).

〈t(k1)t̄(k2)|iT |χ(p1)χ̄(p2)〉 = 〈t(k1)t̄(k2)|T
[
i

∫
d4x Leff(x)

]
|χ(p1)χ̄(p2)〉

= ig̃2
χ

∫
d4x〈t(k1)t̄(k2)|(t̄Γt)(χ̄Γχ)|χ(p1)χ̄(p2)〉

% ig̃2
χ

∫
d4x〈t(k1)t̄(k2)|(t̄Γt)|0〉〈0|(χ̄Γχ)|χ(p1)χ̄(p2)〉 + · · ·

=

[
ig̃2

χ

(
ūr

t (k1)Γvr′

t̄ (k2)
)(

v̄s′

χ̄ (p2)Γus
χ(p1)

)
+ · · ·

] ∫
d4x eix(k1+k2+p1+p2)

≡ iM(χχ̄ → tt̄)(2π)4δ(4)(k1 + k2 − p1 − p2). (A.1)

Therefore the relevant matrix element is

iM(χχ̄ → tt̄) = ig̃2
χ

(
ūt

t(k1)Γvr′

t̄ (k2)
)(

v̄s′

χ̄ (p2)Γus
χ(p2)

)
, (A.2)

where g̃2
χ = g2

χ/Λ2.

A.2 kinematical variables

p1 · p2 =
1

2
(s − 2m2

χ), (A.3)

k1 · k2 =
1

2
(s − 2m2

t ), (A.4)

p1 · k1 = p2 · k2 = −1

2
(t − m2

t − m2
χ) ≡ −1

2
tm, (A.5)

p1 · k2 = p2 · k1 −
1

2
(u − m2

t − m2
χ) ≡ −1

2
um. (A.6)

2

NC = 3, s = (p1 + p2)
2, βt,χ =

�
1− 4m2

t,χ/s,

vector type interaction:

v = 2βχ

dark matter and nuclei.
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t )
]
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t =
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angle. The quantity σv, where v ≈ 2βχ in the non-relativistic limit, can be obtained by
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Ωχh
2 %

0.1 pb

〈σv〉
. (4)

4

❑ Instead of solving the Boltzmann equation, we simply 
estimate the correct size of the annihilation cross section 
using

From ΩCDMh2 = 0.1099± 0.0062, one gets �σv� � 0.91 pb.

Indirect detection

Collider experiments
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g2
χ � 0.3 is consistent with the observed DM abundance.

σv vs. g2
χ

Γ = γµ, mχ = 200 GeV, Λ = 1.0 TeV, v = 0.3

the velocity of 
the DM

at around the 
freeze-out time
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FIG. 1. The calculated σ v versus g2χ for the effective interaction
g2χ
Λ2 (χΓχ) (t̄Γt) of various Dirac

structures Γ with Λ = 1 TeV, mχ = 200 GeV, and v ≈ 0.3.

With the most recent WMAP result on dark matter density ΩCDMh2 = 0.1099± 0.0062 we

obtain the size of σv

〈σv〉 $ 0.91 pb . (5)

We show in Fig. 1 σv versus the coefficient g2χ for a dark matter mass of 200 GeV. The

result shown is for v ≈ 0.3 to approximate the velocity of the dark matter particle at around

the freeze-out time. We can repeat the calculation with Γ = σµν(γ5), γµγ5, γ5, 1 for tensor

5
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≡ iM(χχ̄ → tt̄)(2π)4δ(4)(k1 + k2 − p1 − p2). (A.1)

Therefore the relevant matrix element is

iM(χχ̄ → tt̄) = ig̃2
χ

(
ūt

t(k1)Γvr′

t̄ (k2)
)(

v̄s′

χ̄ (p2)Γus
χ(p2)

)
, (A.2)

where g̃2
χ = g2

χ/Λ2.

A.2 kinematical variables

p1 · p2 =
1

2
(s − 2m2

χ), (A.3)

k1 · k2 =
1

2
(s − 2m2

t ), (A.4)

p1 · k1 = p2 · k2 = −1

2
(t − m2

t − m2
χ) ≡ −1

2
tm, (A.5)

p1 · k2 = p2 · k1 −
1

2
(u − m2

t − m2
χ) ≡ −1

2
um. (A.6)

2

σv vs. g2
χ

scalar, pseudoscalar, axial-vector, (axial) tensor cases:

❑ Scalar-type interaction has a velocity suppression.
0.2 <∼ g2

χ <∼ 0.6 is found in other types of interactions.❑

mχ = 200 GeV, Λ = 1.0 TeV, v = 0.3

∼2x10-3 ∼0.85

∼1.4

∼0.35
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FIG. 2. Contours of σv = 0.91 pb in the plane of (g2χ, mχ) for vector, axial-vector, pseudoscalar,

scalar, tensor and axial-tensor interactions. Λ is set at 1 TeV.

(axial-tensor), axial-vector, pseudoscalar, and scalar type interactions. The results are

dσ

dz
=

g4χ
Λ4

NC

4πs

βt

βχ

[

2 (t2m + u2
m) + 2s(m2

t +m2
χ) + 8m2

tm
2
χ − s2

]

(6)

dσ

dz
=

g4χ
Λ4

NC

16πs

βt

βχ

[

t2m + u2
m − 2s(m2

t +m2
χ) + 16m2

tm
2
χ

]

(7)

dσ

dz
=

g4χ
Λ4

NC

32π
s
βt

βχ
(8)

dσ

dz
=

g4χ
Λ4

NC

32π
sβχβ

3
t (9)

for Γ = σµν(γ5), γµγ5, γ5, 1, respectively. We note that the axial-tensor case has the

expression as in the tensor one given by Eq.(6). The results are shown in Fig. 1 as well. We

can see that the tensor-type interaction gives the largest cross section, followed by vector,

pseudoscalar, and axial-vector. These four types of interactions require g2χ falling into the

range of 0.2 − 0.6 which is about the size of weak-scale interaction. On the other hand,

6

mχ vs. g2
χ

Changing the DM mass, we find
contour plots of σv = 0.91 pb

Λ = 1.0 TeV, v = 0.3

❑ Dependence of the DM mass is relatively mild.
13
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Direct detection

the scalar-type interaction always gives a very small annihilation cross section for a similar

range of g2χ, which is in danger of over-closing the Universe.

In Fig. 2, we show the contour of the cross section for the various types of interactions

as a function of g2χ and mχ as allowed by the WMAP result.

III. DIRECT DETECTION

Recently, the CDMSII finalized their search in Ref. [8]. When they opened the black

box in their blind analysis, they found two candidate events, which are consistent with

background fluctuation at a probability level of about 23%. Nevertheless, the signal is not

conclusive. The CDMS then improves upon the upper limit on the spin-independent (SI)

cross section σSI
χN to 3.8 × 10−44 cm2 for mχ ≈ 70 GeV. The XENON100 Collaboration [9]

also recently announced their newest result. Although XENON100 has the best sensitivity

in the lower mass range, the CDMSII limit is currently still the best in the world for dark

matter mass larger than about 100 GeV. We will adopt a limit of order 4−10×10−44 cm2 for

dark matter mass of 200− 500 GeV. In the following, we will check if the spin-independent

cross section generated by the 4-fermion interactions is consistent with the new limit.

Spin-independent cross sections can arise from the scalar-type and vector-type interac-

tions between the DM and quarks. If the effective interactions between the dark matter

particle and the quarks are given by

L =
∑

q=u,d,s,c,b,t

{αS
q χχ q̄q + αV

q χγµχ q̄γµq} , (10)

then the spin-independent cross section between χ and each of the nucleon (taking the

average between proton and neutron) is given by

σSI
χN =

4µ2
χN

π

(

∣

∣GN
s

∣

∣

2
+

|bN |2

256

)

, (11)

where µχN = mχmN/(mχ +mN ) is the reduced mass between the dark matter particle and

the nucleon N , and

GN
s =

∑

q=u,d,s,c,b,t

〈N |q̄q|N〉 αS
q , (12)

where 〈N |q̄q|N〉 denotes the various nucleon matrix elements. The expression for bN of a

whole nucleus (A,Z) is bN ≡ αV
u (A+Z)+αV

d (2A−Z), we take the average between proton

7
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SI cross section between DM and nucleon:

Spin-independent (SI) cross sections can arise
from the scalar- and vector-type interactions: 
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7

and neutron (assume the number of protons is about the same as that of neutrons in the

nuclei) and thus obtain the expression for a single nucleon

bN =
3

2

(

αV
u + αV

d

)

. (13)

Nevertheless, the contributions to bN come from valence quarks only. Therefore, in our

scenario the only contribution to the SI cross section comes from the top quark, thus only

αS
t is nonzero in the expression of GN

s , which is then given by

GN
s = 〈N |t̄t|N〉

(

g2χ
Λ2

)

, (14)

where 〈N |t̄t|N〉 = fN
Tt(mN/mt). 2 The default value of the parameters fN

Tt used, e.g. in

DarkSUSY [10], is

f p
T t = 0.0595 , fn

Tt = 0.0592 .

Taking the average between proton and neutron the value of GN
s is

GN
s #

fN
TtmN

mt

(

g2χ
Λ2

)

. (15)

For mχ ∼ O(100) GeV, µχN ≈ mN . The spin-independent cross section is

σSI
χN ≈

4µ2
χN

π

(

fN
TtmN

mt

)2 (

g2χ
Λ2

)2

. (16)

We show in Fig. 3 the spin-independent cross section versus g2χ. Note that the axial-

vector interactions contributes to spin-dependent cross sections. Since the constraint from

spin-dependent cross sections is a few orders of magnitude weaker than that from spin-

independent cross sections, we simply focus the spin-independent one to obtain the mean-

ingful range of g2χ and Λ. We found that the limit on spin-independent cross section of

the order of 10−44 cm2 allows g2χ as large as 30 for Λ = 1 TeV. Note that for a strongly

coupled theory, one can have g2 = (4π)2. Such a large g2χ is allowed by spin-independent

cross section constraint as well as by the WMAP relic density constraint. 3 However, one

must be cautious that for such a large effective coupling constant, perturbative calculation

becomes less reliable.

We next turn to the indirect detection of the dark matter, which then gives the strongest

constraint on the present scenario.

2 Equivalently, the top content inside the nucleon can be replaced by the gluon content with fN
Tq replaced

by 2

27
fN
Tg [2]. Numerically, they are very close to each other.

3 When the annihilation cross section is larger than that required by thermal production, the resulting

relic density from thermal production is just too low. However, there could be some other non-thermal

sources, such as decay from heavier fields.
8
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box in their blind analysis, they found two candidate events, which are consistent with
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dark matter mass of 200− 500 GeV. In the following, we will check if the spin-independent

cross section generated by the 4-fermion interactions is consistent with the new limit.
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particle and the quarks are given by

L =
∑

q=u,d,s,c,b,t
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q χγµχ q̄γµq} , (10)

then the spin-independent cross section between χ and each of the nucleon (taking the
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χN =

4µ2
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the nucleon N , and
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s =

∑

q=u,d,s,c,b,t

〈N |q̄q|N〉 αS
q , (12)

where 〈N |q̄q|N〉 denotes the various nucleon matrix elements. The expression for bN of a

whole nucleus (A,Z) is bN ≡ αV
u (A+Z)+αV

d (2A−Z), we take the average between proton

7

The contribution to bN come from valence quarks only.

Note: the axial-vector interactions contributes to spin-dependent (SD) cross sections, 
but the constraint from SD cross sections is a few orders of magnitude weaker than 
that from SI cross sections.
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FIG. 3. Spin-independent cross sections for the vector type interaction versus g2χ.

IV. INDIRECT DETECTION

Another important method to detect the dark matter is by measuring its annihilation

products in Galactic halo. Current experiments can detect the positron, antiproton, gamma

ray, and deuterium from dark matter annihilation. The Milky Way Halo may contain clumps

of dark matter, from where the annihilation of dark matter particles may give rise to large

enough signals, such as positron and antiproton, that can be identified by a number of

antimatter search experiments. The most recent ones come from PAMELA [11, 12], which

showed a spectacular rise in the positron spectrum but an expected spectrum for antiproton.

It may be due to nearby pulsars or dark matter annihilation or decays. If it is really due

to dark matter annihilation, the dark matter would have very strange properties, because

it only gives positrons in the final products but not antiproton. Here we adopt a conserva-

tive approach. We use the observed antiproton and positron spectra as constraints on the

annihilation products in χχ̄ annihilation.

We first consider the positron coming from the process

χχ̄ → tt̄ → (bW+)(b̄W−) → (be+νe) +X (17)

9

mχ = 200 GeV, Λ = 1.0 TeV

σSI
χN vs. g2

χ

CDMSII: σSI
χN < 3.8× 10−44 cm2 for mχ ≈ 70 GeV.

g2
χ <∼ 30 is allowed, which is somewhat strong but still perturbative (< (4π)2)❑

XENON100, 1103.0303

0912.3592
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Indirect detection
❑ We use the observed positron and 
antiproton spectra as constraints on the 
DM-top coupling.

in which the most energetic e+ comes from the W+ decay. There are also positrons coming

off in the subsequent decays of b, b̄, τ+, or µ+, but these positrons are in general softer

than those coming directly from the W+ decay. For a first order estimate of the size of the

coupling g2χ in Eq. (2) we only include the positrons coming directly from the W+ decay.

The expression for annihilation has already been given in Eq. (3), but now with a present

time velocity v ≈ 10−3. The positron flux observed at the Earth is given by

Φe+(E) =
ve+

4π
fe+(E) , (18)

with ve+ close to the velocity of light c. The function fe+(E) satisfies the diffusion equation

of
∂f

∂t
−K(E)∇2f −

∂

∂E
(b(E)f) = Q , (19)

where the diffusion coefficient is K(E) = K0(E/GeV)δ and the energy loss coefficient is

b(E) = E2/(GeV× τE) with τE = 1016 sec. The source term Q due to the annihilation is

Qann = η

(

ρCDM

MCDM

)2
∑

〈σv〉e+
dNe+

dEe+
, (20)

where η = 1/2 (1/4) for (non-)identical DM particle in the initial state. The summation

is over all possible channels that can produce positrons in the final state, and dNe+/dEe+

denotes the spectrum of the positron energy per annihilation in that particular channel. In

our analysis, we employ the vector-type interaction for Dirac fermions and thus the source

term is given by

Qann =
1

4

(

ρCDM

MCDM

)2

〈σv〉χχ̄→tt̄
dNe+

dEe+
, (21)

where the normalization of Ne+ is
∫

dNe+

dx
dx = B(t → bW+ → be+νe) . (22)

We then put the source term into GALPROP [13] to solve the diffusion equation. In Fig. 4

we show the predicted energy spectrum for the positron fraction for various values of g2χ.

With a visual inspection the g2χ ! 8 is allowed by the spectrum.

Next we turn to the antiproton fraction as it was also measured by PAMELA. Similarly,

the antiproton flux can be obtained by solving the diffusion equation with the corresponding

terms and the appropriate source term for the input antiproton spectrum:

Qann = η

(

ρCDM

MCDM

)2
∑

〈σv〉p̄
dNp̄

dTp̄
, (23)

10

Positron flux observed at the Earth:

Diffusion equation
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we show the predicted energy spectrum for the positron fraction for various values of g2χ.

With a visual inspection the g2χ ! 8 is allowed by the spectrum.

Next we turn to the antiproton fraction as it was also measured by PAMELA. Similarly,

the antiproton flux can be obtained by solving the diffusion equation with the corresponding

terms and the appropriate source term for the input antiproton spectrum:
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10

diffusion coefficient energy-loss rate

source term

K(E) = K0(E/GeV)δ, b(E) = E2/(GeV × τE), τE = 1016sec.
K0 = 0.006− 0.08 [kpc2/Myr], δ = 0.4− 0.7, L = 1− 15 [kpc].

ve+ : velocity of e+, fe+ : number density of e+ per unit energy.

* Antiproton Flux in Cosmic Ray Propagation Models with Anisotropic Diffusion
  arXiv:1012.0587 (Phill Grajek, Kaoru Hagiwara)
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IV. INDIRECT DETECTION

Another important method to detect the dark matter is by measuring its annihilation

products in Galactic halo. Current experiments can detect the positron, antiproton, gamma

ray, and deuterium from dark matter annihilation. The Milky Way Halo may contain clumps

of dark matter, from where the annihilation of dark matter particles may give rise to large

enough signals, such as positron and antiproton, that can be identified by a number of

antimatter search experiments. The most recent ones come from PAMELA [11, 12], which

showed a spectacular rise in the positron spectrum but an expected spectrum for antiproton.

It may be due to nearby pulsars or dark matter annihilation or decays. If it is really due

to dark matter annihilation, the dark matter would have very strange properties, because

it only gives positrons in the final products but not antiproton. Here we adopt a conserva-

tive approach. We use the observed antiproton and positron spectra as constraints on the

annihilation products in χχ̄ annihilation.

We first consider the positron coming from the process

χχ̄ → tt̄ → (bW+)(b̄W−) → (be+νe) +X (17)

9

Let us consider the positron coming from the process.

❑ Most energetic positron comes from the W+ decay.
❑ Public code “GALPROP” is used to solve the diffusion 
equation.

Source term by the annihilation of DM

in which the most energetic e+ comes from the W+ decay. There are also positrons coming

off in the subsequent decays of b, b̄, τ+, or µ+, but these positrons are in general softer

than those coming directly from the W+ decay. For a first order estimate of the size of the

coupling g2χ in Eq. (2) we only include the positrons coming directly from the W+ decay.

The expression for annihilation has already been given in Eq. (3), but now with a present

time velocity v ≈ 10−3. The positron flux observed at the Earth is given by
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where η = 1/2 (1/4) for (non-)identical DM particle in the initial state. The summation

is over all possible channels that can produce positrons in the final state, and dNe+/dEe+

denotes the spectrum of the positron energy per annihilation in that particular channel. In

our analysis, we employ the vector-type interaction for Dirac fermions and thus the source

term is given by
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1
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, (21)

where the normalization of Ne+ is
∫

dNe+

dx
dx = B(t → bW+ → be+νe) . (22)

We then put the source term into GALPROP [13] to solve the diffusion equation. In Fig. 4

we show the predicted energy spectrum for the positron fraction for various values of g2χ.

With a visual inspection the g2χ ! 8 is allowed by the spectrum.

Next we turn to the antiproton fraction as it was also measured by PAMELA. Similarly,

the antiproton flux can be obtained by solving the diffusion equation with the corresponding

terms and the appropriate source term for the input antiproton spectrum:

Qann = η

(

ρCDM

MCDM

)2
∑

〈σv〉p̄
dNp̄

dTp̄
, (23)

10

ρCDM: energy density of the DM,
dNe+

dEe+
: energy spectrum of the positron
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FIG. 4. Spectrum for the positron fraction predicted for the vector type interactions for various

g2χ. PAMELA data are shown.

where η = 1/2 (1/4) for (non-)identical initial state, and Tp̄ is the kinetic energy of the

antiproton which is conventionally used instead of the total energy. We again solve the

diffusion equation using GALPROP [13].

In our case, the dominant contribution comes from

χχ̄ → tt̄ → (bW+)(b̄W−) → (bqq̄′)(b̄qq̄′) → p̄+X . (24)

In the last step, all the b b̄, q, q̄′ have probabilities fragmenting into p̄. We adopt a publicly

available code [14] to calculate the fragmentation function Dq→h(z) for any quark q into

hadrons h, e.g., p, p̄, π. The fragmentation function is then convoluted with energy spectrum

dN/dE of the light quark to obtain the energy spectrum of the antiproton dN/dEp̄. The

source term dN/dTp̄ is then implemented into GALPROP to calculate the propagation from

the halo to the Earth. We display the energy spectrum for the antiproton fraction in Fig. 5.

It is easy to see that g2χ is constrained to be

g2χ ! 4− 5 . (25)

11

Positron fraction

g2
χ <∼ 8 is allowed by the positron fraction data

Γ = γµ, mχ = 200 GeV, Λ = 1.0 TeV
0810.4995
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Antiproton fraction
Source term for the antiproton spectrum

in which the most energetic e+ comes from the W+ decay. There are also positrons coming

off in the subsequent decays of b, b̄, τ+, or µ+, but these positrons are in general softer

than those coming directly from the W+ decay. For a first order estimate of the size of the

coupling g2χ in Eq. (2) we only include the positrons coming directly from the W+ decay.

The expression for annihilation has already been given in Eq. (3), but now with a present

time velocity v ≈ 10−3. The positron flux observed at the Earth is given by

Φe+(E) =
ve+

4π
fe+(E) , (18)

with ve+ close to the velocity of light c. The function fe+(E) satisfies the diffusion equation

of
∂f

∂t
−K(E)∇2f −

∂

∂E
(b(E)f) = Q , (19)

where the diffusion coefficient is K(E) = K0(E/GeV)δ and the energy loss coefficient is

b(E) = E2/(GeV× τE) with τE = 1016 sec. The source term Q due to the annihilation is

Qann = η

(

ρCDM

MCDM

)2
∑

〈σv〉e+
dNe+

dEe+
, (20)

where η = 1/2 (1/4) for (non-)identical DM particle in the initial state. The summation

is over all possible channels that can produce positrons in the final state, and dNe+/dEe+

denotes the spectrum of the positron energy per annihilation in that particular channel. In

our analysis, we employ the vector-type interaction for Dirac fermions and thus the source

term is given by

Qann =
1

4

(

ρCDM

MCDM

)2

〈σv〉χχ̄→tt̄
dNe+

dEe+
, (21)

where the normalization of Ne+ is
∫

dNe+

dx
dx = B(t → bW+ → be+νe) . (22)

We then put the source term into GALPROP [13] to solve the diffusion equation. In Fig. 4

we show the predicted energy spectrum for the positron fraction for various values of g2χ.

With a visual inspection the g2χ ! 8 is allowed by the spectrum.

Next we turn to the antiproton fraction as it was also measured by PAMELA. Similarly,

the antiproton flux can be obtained by solving the diffusion equation with the corresponding

terms and the appropriate source term for the input antiproton spectrum:

Qann = η

(

ρCDM

MCDM

)2
∑

〈σv〉p̄
dNp̄

dTp̄
, (23)

10
where Tp̄ is the kinetic energy of the antiproton.

Antiproton mainly come from the process

!"!#

!"#

#

# #! #!! #!!!
$%$&'()*+$,-

./
01
2&
/%
)3
&4
52
1/
%

.46$74)8424

'47.&/.)9:'8

';<=>?>

';<=>?@

';<=>?A

';<=>?B

';<=>?C

';<=>?#!

FIG. 4. Spectrum for the positron fraction predicted for the vector type interactions for various

g2χ. PAMELA data are shown.

where η = 1/2 (1/4) for (non-)identical initial state, and Tp̄ is the kinetic energy of the

antiproton which is conventionally used instead of the total energy. We again solve the

diffusion equation using GALPROP [13].

In our case, the dominant contribution comes from

χχ̄ → tt̄ → (bW+)(b̄W−) → (bqq̄′)(b̄qq̄′) → p̄+X . (24)

In the last step, all the b b̄, q, q̄′ have probabilities fragmenting into p̄. We adopt a publicly

available code [14] to calculate the fragmentation function Dq→h(z) for any quark q into

hadrons h, e.g., p, p̄, π. The fragmentation function is then convoluted with energy spectrum

dN/dE of the light quark to obtain the energy spectrum of the antiproton dN/dEp̄. The

source term dN/dTp̄ is then implemented into GALPROP to calculate the propagation from

the halo to the Earth. We display the energy spectrum for the antiproton fraction in Fig. 5.

It is easy to see that g2χ is constrained to be

g2χ ! 4− 5 . (25)

11

• b, b̄, q, q̄� can fragment into p̄.
• Public code [S.Albino et al,NPB725, 181 (’05)] is used to calculate the
fragmentation function Dq→h, where h � p, p̄, π etc.
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Antiproton fraction
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FIG. 5. Spectrum for the antiproton fraction predicted for the vector type interactions for various

g2χ. PAMELA data are shown.

We will use this allowed range to estimate what we would expect from the LHC.

V. COLLIDER SIGNATURE

Collider signatures are perhaps the most interesting part of the scenario – tt̄ pair plus

large missing energy. We first calculate using the effective 4-fermion interaction with Γ = γµ

the production cross section for pp → tt̄ + χχ̄. There are two contributing subprocesses for

tt̄ production at the LHC:

qq̄ → tt̄ , gg → tt̄ , (26)

on which we can attach one 4-fermion interaction vertex to each fermion leg including internal

fermion line to further produce a χχ pair. A typical Feynman diagram is shown in Fig. 6.

We employ MADGRAPH [15] to calculate the signal and background cross sections.

The irreducible background is tt̄ + Z → tt̄νν̄. Before applying any cuts we calculate

12

Constraint coming from the antiproton fraction is somewhat stronger than
that of positron, g2

χ <∼ 4− 5.

Γ = γµ, mχ = 200 GeV, Λ = 1.0 TeV

0810.4994
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Collider experiments
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Collider experiments
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FIG. 5. Spectrum for the antiproton fraction predicted for the vector type interactions for various

g2χ. PAMELA data are shown.

We will use this allowed range to estimate what we would expect from the LHC.

V. COLLIDER SIGNATURE

Collider signatures are perhaps the most interesting part of the scenario – tt̄ pair plus

large missing energy. We first calculate using the effective 4-fermion interaction with Γ = γµ

the production cross section for pp → tt̄ + χχ̄. There are two contributing subprocesses for

tt̄ production at the LHC:

qq̄ → tt̄ , gg → tt̄ , (26)

on which we can attach one 4-fermion interaction vertex to each fermion leg including internal

fermion line to further produce a χχ pair. A typical Feynman diagram is shown in Fig. 6.

We employ MADGRAPH [15] to calculate the signal and background cross sections.

The irreducible background is tt̄ + Z → tt̄νν̄. Before applying any cuts we calculate

12

❑ Collider signatures of this model:
   pp > (t-pair)+(DM-pair) > (t-pair)+(large missing energy)

❑ Public code “MadGraph/MadEvent” is used to calculate 
the signal and background cross sections.
   The irreducible background process: 

❑ We implemented the DM and its interaction into MG/ME.

Indirect detection

Collider experiments

D
irect d

etection

DM

DM

SM

SM
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Missing ET
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FIG. 6. A contributing Feynman diagram for the subprocess gg → tt̄+χχ. The other two diagrams

can be obtained by attaching the black dot to the t and t̄ leg, respectively.
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FIG. 7. Missing transverse energy "ET distributions for the signal pp → tt̄+χχ̄ and the background

pp → tt̄Z for g2χ = 3− 30 with mχ = 200 GeV.

the signal cross section versus background cross section: 8.2 fb (for g2χ = 5) to 140 fb, in

which we have chosen scale Q = (2mt + 2mχ)/2 in the running coupling constant and the

parton distribution functions for the signal, while Q = (2mt + mZ)/2 for the background.

We first compare the missing ET distribution between the dark matter signal and the tt̄Z

background, shown in Fig. 7. It is clear that the signal has a harder missing ET spectrum

than the background. This plot suggests a cut as large as 400 GeV in the missing transverse

energy can substantially reduces the background to a level similar to the signal. The cross

sections in fb for the signal and the background using various cuts on the missing energy

13

❑ Signal has a harder missing ET spectrum than the bkgd.
❑ ET≃400 GeV cuts can substantially reduce the bkgd.

Γ = γµ, mχ = 200 GeV, Λ = 1.0 TeV
√

s = 14 TeV
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Invariant mass
Γ = γµ, mχ = 200 GeV, Λ = 1.0 TeV, g2

χ = 5
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Cross sections

• S/
√

B with L = 100 fb−1 stays around 11 with a cut of 300-500 GeV.
• Since S/

√
B scales as

√
L, it is still as large as 6 with L = 30 fb−1.

❑ Other types of the interactions
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Summary

• We have considered the scenario in which DM can 
couple only to the top quark via 4-fermi interactions.

• If the DM is thermally produced, 

• Direct search experiments allows

• However, the PAMELA data can constrain

• By using the appropriate missing ET cut, the 
significance S/√B can be improved, and this model is 
testable at the LHC.

g2
χ ≈ 0.3− 0.6

g2
χ <∼ 4− 5

g2
χ � 30

w/ g2
χ � O(1)

28

Friday 1 April 2011


