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Outline

* Introduction

* Practical examples of astrophysical issues (at the Galactic scale)

=> size of the GCR diffusion zone: relevant to antiprotons, antideuterons, (diffuse
gamma-rays)

=> positron fraction: clarifying the role of local astrophysical sources

=> 1mpact of DM inhomogeneities: boost + reinterpreting current constraints

=> diffuse gamma-rays

* Perspectives
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Main arguments:

* Annihilation final states lead to: gamma-rays + antimatter

e y-rays : lines, spatial + spectral distribution of signals vs bg
* Antimatter cosmic rays: secondary, therefore low bg

* DM-induced antimatter has specific spectral properties

* Do we control the backgrounds?
* Antiprotons are secondaries, not necessarily positrons
* Do the natural DM particle models provide clean signatures?
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Main arguments:

 Annihilation final states lead to: gamma-rays + antimatter

e y-rays : lines, spatial + spectral distribution of signals vs bg
* Antimatter cosmic rays: secondary, therefore low bg

* DM-induced antimatter has specific spectral properties

* Do we control the backgrounds?
* Antiprotons are secondaries, not necessarily positrons
* Do the natural DM particle models provide clean signatures?
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Transport of Galactic cosmic rays

The standard picture

} dn
dF

dE
'ﬁ((T—(),;ﬁ Kop0,
at

(]n

Y dE

dn i

dFE

From Haslam et al data (1982)




Dark matter has long been discovered !
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Around the GC
o AMS-02 ] . .
o PAMELA Weniger +, Finkbeiner + (2012)
A Fermi — DM around 130 GeV

Positron fraction

511 keV, Knodlséder/Weidenspointner + (2005 - 2008)
Boehm, Hooper + (2004) — DM around 1 MeV

e* energy [GeV]

HEAT/PAMELA/AMS positron excess
Bergstrom +, Cirelli + (2008) — DM around 300-1000 GeV
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Agnese + (2013)
DAMA, CoGenT, CRESST ... + CDMSII(SI)
versus XENON-10, XENON-100
— DM around 10 GeV

Counts - Model
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Around the GC
o AMS-02 3 : r
o PAMELA Weniger +, Finkbeiner + (2012)
A Fermi — DM around 130 GeV

Pulsars?

Positron fraction

511 keV, Knodlséder/Weidenspointner + (2005 - 2008)
Boehm, Hooper + (2004) — DM around 1 MeV

e* energy [GeV]

HEAT/PAMELA/AMS positron excess
Bergstrom +, Cirelli + (2008) — DM around 300-1000 GeV
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Strategy?

* Instrumental effects (not our job)

* Check consistency with complementary signals

=> multi-messenger analyses (multiwavelength photons, antimatter CRs, neutrinos)
=> multi-source analyses (MW, Dwarf galaxies, )

=> (other detection methods: LHC+direct+indirect+early universe+etc.)

* Understand / quantify theoretical uncertainties (for discovery as well as constraints)
=> eg CR transport, DM distribution, Galactic components

* Understand / quantify backgrounds
=> astrophysical sources / mechanisms

NB: Fermi + HESS2 + AMSO02 + CTA => beginning of precision era in GeV-TeV astrophysics
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Focus on antinuclei: antiproton constraints

DAMA+CDMS+COGENT mass regions
(+ GC fit by Hooper+)
=> WIMP mass ~10 GeV

CoGeNT Collab (2010), Bottino+ (2010)
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Couplings to quarks => annihilation may produce
antiprotons (not generic for Majorana fermions,
only s-wave contributions)

Large antiproton flux expected (scales like 1/m?)
** Uncertainties due to the size of the diffusion zone?

Lavalle (2010)

Lavalle (20100 Lavalle (20100
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Impact of the size of the diffusion zone

Bringmann & Salati (2007)

BESE #5487 HEEET-F?ln‘m.nnk\:ﬂ.n:;]l;: [::nﬂ Maurin+ (2001) & Donat0+ (2002)
=> attempts to bracket theoretical uncertainties

Besides best fit transport model (dubbed med), proposal for 2
extreme configurations:

[m=2 5= sr=* GeV-']

min: L= 1 kpc
LSP candidate 1.7 TeV
NFW DM halo profile max: L =15 kpC

g1

minimizing and maximizing the DM-induced fluxes, respectively.

Solar Minimum with ¢, = 500 MV ||
\

- e NB: much less effect on high-energy positrons (Lavalle+ 07,
T (GeV] Delahaye+ 08) — short propagation scale.

Maurin, Donato, Fornengo (2008)

ANTIDEUTERON FLUXES FROM DARK MATTER ...
10-2

m,= 50 GeV, TOA

The game people usually play:

1) you want your model to survive antiproton
constraints:

=> take a small L

2) you want to advertise your model for detection:
=> take L from med to max.
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Where do constraints on L come from?

Putze+ (2011)

AMS-0] (Tomasseti et al. 2009)
» HEAQ-3 (Engelmann et al. 1950)

¥ Spacelab-2 (Swordy et al. 1990)

v CREAM 04 (Ahn et al. 2008)

l

Secondary/Primary ratios:

Degeneracy between K and L!

2 (Lukasiak 1999)

(De nolfo et al. 2006) ' On the blackboard

ACE 57-98 (George et al. 2005)

ACE 01-03 (George et al. 2009)

Ek/n (GeV/n)
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Where do constraints on L come from?

Putze+ (2011)

AMS-0] (Tomasseti et al. 2009)
» HEAQ-3 (Engelmann et al. 1950)

¥ Spacelab-2 (Swordy et al. 1990)

v CREAM 04 (Ahn et al. 2008)

l

Breaking degeneracy with
radioactive secondaries
=> |ifetime too short to reach L

Strong+ (2004)

4 ACE 97-98 (De nolfo et al. 2006)
ACE 57-98 (George et al. 2005)

ACE 01-03 (George et al. 2009)

This work, TOF
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Uncertainties in the diffusion halo size?
Quick digression towards positrons

Secondary positrons
(eg. Delahaye+09, Lavalle 11)

Lavalle (2010)
[

Secondary e’ flux
[CREAM CR fit]

AR

Small L. models in tension with positron data

=> L > 1 kpc => Very conservative statement!
Propagation [KN incl.]

_ Perspectives:
* CAPRICE 94 min « PAMELA/AMS data still to come

o HEAT 94-95 med ; . _
=> Ongoing work with Maurin and Putze
AMS 01 max

10
E [GeV]
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What else on K and L?
(on the spectral hardening)

Could be due to a change 1n diffusion
properties (eg Blasi+ 12)

ATIC Collab (2006-2012
e ) —> K has different slope > 100 GeV

(from 0.7 to 0.3)

Cream Collab (2010-2011)

=> 1mpact on secondary CR production

Blasi+ (2012)

Flux x E*"® (m?s sr)™" (GeV nucleon™) '’

102 10 10? 10°  10°
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Short comments on the positron fraction

o AMS-02
o PAMELA
A Fermi
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10
Energy [GeV]

Aharonian+ (1995)

We know pulsars can make it in principle.

Going to realistic modeling is complicated (eg Delahaye et al 10).

=> geparate distant/local sources, and accommodate the full data (e-, e+,
ete-, et/ete-) ...

=> Pulsar wind nebulae (PWNe) as positron/electron sources
=> SNRs as electron sources (each PWN must be paired with an SNR)

=> you may fit amplitudes / spectral indices ... then what?
** Observational constraints!

=>use pulsar period, multiwavelength data for all observed sources ...
but ... not that simple.



Modeling the electron/positron sources?

cosmic rays

IR Optical
p 3*1..‘_ X-ray

Crab nebula (ESA)
(just for illustration,

. d o d
IR BRSOl Dlhoton obs. time = — ~ 300 yr [1”” }
r"‘ I pc

2

| t ti 301 E 17T d
ransport time & ——— =~ 30 kyr _
I K(E) o 1 TeV 100 pc

log10i(EeV)
E-loss time Horns & Aharonian (04)
e Crab SED
Different timescales: Very complicated problem:
1) E-loss time > source age > transport time 1) photon data: CRs which are mostly still confined in sources
2) transport time >> photon time (escape issue)
=> cannot directly use photon data 2) coupled evolution of magnetic fields and CR density

=> requires dynamical models for sources (time evolution)
Some attempts at the source level (eg Ohira+ 10-11), but
much more work necessary.

Work in prep. with Y. Gallant and A. Marcowith (LUPM).

Julien Lavalle, Service de Physique Théorigue, ULB, 19 IV 2013



Anisotropy as a test?
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Caveats:

* model-dependent (diffusion halo size again!)

* contributions of other sources (eg dipole from
GC/antiGC asymmetry in the source distribution)
* cancellations might occur in the dipole

Still:

* physically meaningful information

* should be provided for all CR species separately (eg
positrons, antiprotons, etc.)

* will provide constraints to the full transport model

* AMS may reach the necessary sensitivity



DM interpretation of the positron excess?
(if yvou still want to believe ...)

PAMELA 08

background? !’
backeground?

)

background? I
DM DM — pu. NFW profile

Cirelli, Strumia+ (2008-2013)

r_d

Method: >

* backeround (!!!) + annihilation cross-section as free params. =

gr p 3
Conclusions:

* severe antiproton constraints => multi-TeV or leptophilic models

But ..

Mpy [GeV]
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DM interpretation of the positron excess?
(if yvou still want to believe ...)

10~

PAMELA 08

background? !’
/  background?

PAMELA 08

ML

background? b f .
7 background? 1\ DM DM — pu., NFW profile

Cirelli, Strumia+ (2008-2013)

'_d
Method: >
* background (!!!) + annihilation cross-section as free params. e
Conclusions:

* severe antiproton constraints => multi-TeV or leptophilic models

But ... local DM: 0.3 — 0.4 GeV/cm3, DM subhalos == BF ~ 2-3
=> factor of 4-5 possible
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Boost factor ?
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well, in fact, boost factors
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The volume over which the average is
performed depends on the cosmic messenger!



Boost factor ? ... well, in fact, boost factors

Observer

The volume over which the average 1s performed
depends on the cosmic messenger!

1) point a telescope to a certain direction, and average over a volume set by
the angular resolution
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Boost factor ? ... well, in fact, boost factors

Observer

The volume over which the average 1s performed
depends on the cosmic messenger!

1) point a telescope to a certain direction, and average over a volume set by
the angular resolution
a) To the Galactic center: the smooth halo is singular, clumps have no effect, B ~ 1
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Boost factor ? ... well, in fact, boost factors
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The volume over which the average 1s performed
depends on the cosmic messenger!

1) point a telescope to a certain direction, and average over a volume set by
the angular resolution

a) To the Galactic center: the smooth halo is singular, clumps have no effect, B~ 1

b) To high latitudes/longitudes: the smooth halo contributes much less, B>>1

Julien Lavalle, Service de Physique Théorigue, ULB, 19 IV 2013



Boost factor ? ... well, in fact, boost factors

The volume over which the average 1s performed
depends on the cosmic messenger!

1) point a telescope to a certain direction, and average over a volume set by
the angular resolution

a) To the Galactic center: the smooth halo is singular, clumps have no effect, B~ 1

b) To high latitudes/longitudes: the smooth halo contributes much less, B>>1
2) stochastic motion, define energy-dependent propagation scale.

a) Large propagation scale: if enough to feel regions close to GC, then B ~ 1

b) Small propagation scale: if we are sitting on a clump, then B>>1, otherwise B moderate
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Impact of subhalos on the positron flux

If DM is cold, subhalos must exist and survive tidal stripping (eg
Berezinsky+ 05).

Very small masses can be achieved, fixed by the WIMP free
streaming scale (eg Bringmann 09).

Properties studied in cosmological simulations, but limited by
resolution => M > 104 Msun only.

Latest dedicated studies show profiles more cuspy than NFW at
cut-off mass (eg Ishiyama+ 10, Anderhalden+ 13).

500 1000
my [GeV]

=> PAMELA could be explained by 100 GeV WIMPs (not AMS)

Via Lactea Il Injected spectra

clumpy hale (5a)

"™ b ——  bb (40 GeV)

a'a’ (100 GeV)

v
— W'W (100 GeV)

7 (2 TeV)

HEAT 94«85
HEAT 00
AMS1 07

PAMELA 10

My [GeV] el

0.0001

sitron energy E [GeV

Posi;[‘ron fr!action Diffuse gamma-rays 3
Lavalle+ (2007), Pieri, Lavalle+ (2010) Blanchet & Lavalle (2012) pgercaigiden, Diemand'(2013)
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Diffuse gamma-rays (Fermi) and GCR models

Ackermann et al (2012) — 1202.4039

Eu [MeV]

Assumptions:
- homogeneous/isotropic diffusion coefficient

- continuous distribution of sources; CRs escape sources with ad-hoc broken power laws (indices are free parameters)
- ISM from HI, H2 (CO), HII (Lazio & Cordes), dust correlations ... maps

Results:

- global fit to the data not too bad (10-20% residuals), except GC and G-edges (30-40%)
- large magnetic halo preferred, L ~ 10 kpc
- Caveats: potentially large (and degenerate) systematic errors, but physical interpretation meaningful = encouraging
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Diffuse emission and CRs: theoretical uncertainties
(1. Delahaye, IFT-LAPTh)

Pohl et al (2008) Diff with Galprop (hadronic contribution)
3D model of H2 ~ 50% in the disk!

g,
-3 i .
W
F

rop gas})/ & (MED)

Impact of ISM modeling

]
-
&)
=
]
=
=
-
£
A

1102.0744

Delahaye et al. 2011

Other potential th. errors from
ISM composition and nuclear
cross sections:

Advantages
* Good sensitivity, sampling & uniformity of CO survey
* Kinematic resolution toward GC

Kamae + Norbury Townsend

Kamae + Mori

Limitations
* Limited resolution of SPH simulations (problem near GC)

* Single value of Xco

Comments
* Very thorough & lucid analysis
* Globally reliable, except within ~ 1 kpc from GC

* Model available online
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Diffuse emission. a top bottom approach

Cosmological simulation:
self-consistent modeling of a galaxy (DM, gas, stars)

Stars/SNRs

FIG. 1. Left: DM halo and subhalos; the virial radius (264 kpc) appears as a red circle. Middle: top view of the gas content
(scaled as in right panel). Right: SN events in the last 500 Myr (10 kpc grid).

1204.4121

Skymaps:
DM (100 GeV b-bbar) — astro processes — DM/astro

Advantages:

* all ingredients are identified and localized (sources and gas)
* check the relevance of current assumptions
Limits: spatial resolution

=> preliminary results encouraging, work in progress Compare e.g. with Wenlger 12
(optimized region for 130 GeV line)
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Conclusions

- Current GCR models allow for a reasonable understanding of (i) the local CR budget and
(11) the Galactic diffuse emission(s)

- Nota: there is no “standard model” for GCRs! (many inputs, lucidity is required)

- Not accurate enough for specific regions (e.g. GC), but still very useful

- Current models have reached their limits

=> prediction power saturates, need to put more physics in ... at the price of increasing
theoretical uncertainties (though expected to decrease in the future)

For DM:

- Best targets remain:

1) DSPhs as observed in gamma-rays + gamma-ray lines

2) neutrinos from the Sun

- Antimatter CRs + diffuse emissions more relevant to constraints: astrophysics pollutes a lot,
and 1s not completely controlled yet

*** Complementarity with other detection methods (direct/LHC) is definitely the best
strategy.
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