New Strong Dynamics for EWSB and DM

In collaboration with A. Belyaev, R. Foadi, F. Kahlhoefer, J. March-Russell, C. McCabe, M. McCullough, F. Sannino, S. Sarkar, K. Schmidt-Hoberg.

Mads Toudal Frandsen

ULB, Bruxelles, October 28th, 2011

Outline

- Introduction to Technicolor
 - Minimal Walking Technicolor models
 - Constraints on Technicolor
- Technicolor phenomenology and collider signatures

- Introduction to Asymmetric Dark Matter
- ADM from Technicolor or New Strong Dynamics
- DM vs ADM signatures direct (incl. recent 'hints')/ indirect/collider detection

Baryonic matter is asymmetric - mass and stability arises from strong dynamics

Mass scale	Particle	Symmetry/	Stability	Production	Abundance
		Quantum #			
Λ _{QCD} Dynamical	Baryons No antibaryons	U(1) Baryon number	τ > 10 ³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium Asymmetry	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$

The mass density of dark matter is of the same order as baryonic matter!

Is the origin of mass dynamical?

Is DM asymmetric? $\Omega_{\chi}/\Omega_B = m_{\chi}/m_B \times N_{\chi}/N_B$ $\mathcal{N}_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$

Is the origin of DM due to NSD?

Higgs everywhere short for Brout-Englert-Higgs

EWSB from Technicolor: (Weinberg 78, Susskind 78)

In the SM without a Higgs, QCD breaks the EW symmetry:

$$\langle \bar{u}_L u_R + \bar{d}_L d_R \rangle \neq 0 \quad \rightarrow \quad M_W = \frac{g f_\pi}{2}$$

- Consider a new strongly interacting gauge theory with $F_{\Pi} = v_{EW} = 246 GeV$.
- Let the electroweak gauge group be a subgroup of the chiral symmetry group.

Left-handed technifermions in weak doublets, right-handed in weak singlets

$$Q_{\rm L}^a = \begin{pmatrix} U^a \\ D^a \end{pmatrix}_{\rm L}, \ Q_{\rm R}^a = (U_{\rm R}^a, D_{\rm R}^a),$$

$$a = 1, \dots d(\mathcal{R}_{\rm TC})$$

At the weak scale, the technifermions condense and break the weak symmetries correctly to EM:

$$\langle \bar{U}_L U_R + \bar{D}_L D_R \rangle \neq 0$$

(Farhi & Susskind 81)

EWSB from Technicolor: (Weinberg 78, Susskind 78)

In the SM without a Higgs, QCD breaks the EW symmetry: (Farhi & Susskind 81)

$$\langle \bar{u}_L u_R + \bar{d}_L d_R \rangle \neq 0 \quad \rightarrow \quad M_W = \frac{g t_\pi}{2}$$

- 2 Consider a new strongly interacting gauge theory with $F_{\Pi} = v_{EW} = 246 GeV$.
- Let the electroweak gauge group be a subgroup of the chiral symmetry group.

Example: Scaled-up QCD !

The SM gauge group is augmented:

$$G_{SM} \rightarrow SU(3)_{c} \times SU(2)_{W} \times U(1)_{Y} \times G_{SD}$$
.

(SD=Strong Dynamics/Technicolor)

The Higgs sector of the SM is replaced:

$$\mathcal{L}_{Higgs} \rightarrow -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{Q}_{\rm L} \gamma_{\mu} D^{\mu} Q_{\rm L} + i \bar{Q}_{\rm R} \gamma_{\mu} D^{\mu} Q_{\rm R} + \dots$$
$$\langle \bar{U}_{L} U_{R} + \bar{D}_{L} D_{R} \rangle \sim F^{3}_{\Pi} \rightarrow M_{W} = \frac{g F_{\pi}}{2}$$

Minimal chiral symmetries: 3 GB's + Custodial + DM.

$$SU_L(2) \times SU_R(2) \times U_{TB}(1) \rightarrow SU_V(2) \times U_{TB}(1)$$
.

Minimal fermion content:2 Dirac technifermions in a weak doublet,TC charge but no QCD charges

$$\begin{aligned} Q_{\mathrm{L}}^{a} &= \begin{pmatrix} U^{a} \\ D^{a} \end{pmatrix}_{\mathrm{L}}, \ Q_{R}^{a} = (U_{\mathrm{R}}^{a}, D_{\mathrm{R}}^{a}), \\ a &= 1, \dots d(\mathcal{R}_{\mathrm{TC}}) \end{aligned}$$

Minimal Walking

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T \;, \quad U_R^{+1/2} \;, \; D_R^{-1/2}$$

Can group minimal models by representation \mathcal{R} of technifermions under TC gauge group \mathcal{G}_{TC}

Mads Toudal Frandsen - University of Oxford

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons. (Dietrich, Sannino and Tuominen 05)

and Shrock 10 M.T.F, Sarkar and Scmidt-Hoberg 11)

Constraints on models of

Why minimality and near conformality/walking?

Fermion masses

Need new interactions to generate SM fermion masses

Low energy four-fermion operators:

Classical example is Extended Technicolor (ETC): TC gauge group embedded in Larger ETC group, SM fermions also charged under ETC, ETC breaks to TC at : Λ_{ETC}

After Fierz rearrangement:

The four-fermion interactions with only SM fermions are dangerous:

$$\alpha_{ab} \frac{\bar{Q}T^a Q \bar{\psi} T^b \psi}{\Lambda_{\rm ETC}^2} + \beta_{ab} \frac{\bar{Q}T^a Q \bar{Q} T^b Q}{\Lambda_{\rm ETC}^2} + \gamma_{ab} \frac{\bar{\psi} T^a \psi \bar{\psi} T^b \psi}{\Lambda_{\rm ETC}^2} + \dots$$

Example:

$$rac{1}{\Lambda_{
m ETC}^2}(ar{s}\gamma^5 d)(ar{s}\gamma^5 d)+rac{1}{\Lambda_{
m ETC}^2}(ar{\mu}\gamma^5 e)(ar{e}\gamma^5 e)+\dots$$

- The first term is a $\Delta S = 2$ FCNC interaction affecting the $K_L K_S$ mass difference which is measured accurately.
- The second term induces FCNC in the leptonic sector such as $\mu \to e\bar{e}e, e\gamma$ which are not observed.

Note this is not a problem of the Technicolor sector per se

Walking alleviates tension between FCNC's and fermion mass generation in ETC

• $\langle \bar{Q}Q \rangle_{\rm ETC}$ can be related to $\langle \bar{Q}Q \rangle_{\rm TC}$ by the renormalization group equations:

$$egin{aligned} &\langle ar{Q}Q
angle_{ ext{ETC}} = \exp\left(\int_{\Lambda_{ ext{TC}}}^{\Lambda_{ ext{ETC}}} d(\ln\mu)\gamma(lpha(\mu))
ight) \langle ar{Q}Q
angle_{ ext{TC}} \end{aligned}$$

Walking – near conformal gauge dynamics

Mads Toudal Frandsen - University of Oxford

Constraints from LEP

A minimal matter content in the TC sector is favored:

(Kennedy and Lynn 89; Peskin and Takeuchi 90; Altarelli and Barbieri 91)

But: technifermions are strongly interacting at LEP energies, would large corrections to one-loop estimate: $S = S_{naive}(1 + \delta)$

In QCD

 $\delta \sim O(1)$

Walking potentially reduces the S parameter

Mads Toudal Frandsen - University of Oxford

If Technifermions are in the fund representation of the TC gauge group a large number of Techni-flavors required to be near-conformal -> large S at one-loop level With different reps like the adjoint much less matter is needed to be near-conformal

Ongoing lattice simulations of MWT and other models

Dedicated international collaborations include the LSD collaboration (US) & StrongBSM collaboration (Europe)

Mads Toudal Frandsen - University of Oxford

From Strong Dynamics to LHC

Analytical tools, phase-diagram

LHC data

Summary - II

Minimal Walking Technicolor

- Minimality (few technifermions) reduces the S parameter at the perturbative level
- *Walking* potentially reduces the full S parameter reduced non-perturbative contributions)
- Walking reduces tension with FCNC's when constructing complete ETC models
- Lattice simulations of MWT models are ongoing to determine if candidate models are near-conformal/walking

LHC phenomenology of Minimal Walking

(A. Belyaev, R. Foadi, MTF, M. Jarvinen,

F. Sannino & A. Pukhov 08; Work in progress)

EFT for strong dynamics @ LHC

common sector:

$$SU_L(2) \times SU_R(2) \times U_{TB}(1) \rightarrow SU_V(2) \times U_{TB}(1)$$
.

Classify composite states according to the **unbroken chiral symmetries** Organize in effective Lagrangian

Triplets and singlets of vector mesons, compared to QCD: $R_{1,2} \sim \rho, a_1$ $R_{\omega} \sim \omega$ $M_{R_2} > M_{R_1}$

Scalar mesons:

$$H \sim \sigma(600) \qquad \Pi \sim K, \dots$$

Note that pions in MWT models can carry techni-baryon number and be DM candidates

Compare with experimental 'benchmark' states: $R^0_{1,2} \sim Z'_{1,2}, R^\pm_{1,2} \sim W^{'\pm}_{1,2} \qquad H \sim h$

EFT for strong dynamics @ LHC

common sector:

$$SU_L(2) imes SU_R(2) imes U_{TB}(1)
ightarrow SU_V(2) imes U_{TB}(1)$$
.

Effective coupling and masses of composite states:

$${ ilde g}\sim g_{
ho\pi\pi} ~~ M_{R_{1,2}}\sim M_{A,V}~~ M_{R_\omega}\sim M_V$$
 ($M_{A,V}$ Are the vector meson masses before including the EW corrections)

Coupling structure to SM fields :

(Assuming couplings to SM fermions only from vector meson mass mixing – Can have additional contribution from ETC

LHC Phenomenology

Example production and decay amplitudes:

Different production modes and decay channels probe different regions in the parameter space $~\tilde{g}, M_A(M_V)$

The axial-vector R mainly couples mainly via H while the vector state couples to 2 vectors Note that symmetries of the strong dynamics alone, determine important aspects of phenomenology

(A. Belyaev, R. Foadi, M.T.F, M. Jarvinen, F. Sannino & A. Pukhov 08)

Model implementation

NMWT Lagrangian model files for CalcHEP & MadGraph available at: http://cp3-origins.dk/research/tc-tools

Both LanHEP and FeynRules models have been implemented to generate model files.

Parameter space

Limits from EWPT & dilepton searches:

(Foadi, M.T.F and Sannino 07; Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

Composite Higgs mass and S parameter fixed:

$$M_H = 0.2 \,\mathrm{TeV}, S = 0.3$$

Update and projections for di-lepton channel:

Vector BRs

A-V inversion point – 'accidental A-V symmetry', compare with D-BESS or 'Custodial TC' (R. Foadi, M.T.F & F. Sannino 07)

$\ell^+\ell^-$ signature @ LHC using CalcHEP

4 Different colors corresponds to 4 different choices of mass parameter $\,M_A\,$

Figure: Dilepton invariant mass distribution $M_{\ell\ell}$ for $pp \to R_{1,2}^0 \to \ell^+ \ell^ M_A(GeV) =: 500 \ 1000 \ 1500 \ 2000$

Di-boson vs Higgs-strahlung

590

Summary I

- Technicolor provides a natural origin of EWSB and of asymmetric dark matter.
- Candidate MWT models: MWT/OMT, NMWT, UMT

- constructed to be viable (pass EWPT, and FCNCs in complete ETC model)

- and in some cases provide DM .

- Simple phenomenological Lagrangians implemented to study the basic LHC signals
 - a lot of interesting collider phenomenology to consider
 - Experimental groups interested in setting model specific limits
- Extensive on-going lattice simulations to investigate underlying gauge theories and map it to LHC physics

Mass scale	Particle	Symmetry/ Ouantum #	Stability	Production	Abundance
Λ _{QCD} Dynamical	Baryons No antibaryons	U(1) Baryon number	τ > 10 ³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium Asymmetry	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$

Mads Toudal Frandsen - University of Oxford

Baryon disaster (WIMP miracle)

Chemical and thermal equilibrium when annihilation rate exceeds the Hubble expansion rate:

$$\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{\rm T}^2)$$

'Freeze-out' occurs when annihilation rate:

$$\Gamma = n\sigma v \sim m_N^{3/2} T^{3/2} \mathrm{e}^{-m_N/T} rac{1}{m_\pi^2}$$

becomes comparable to the expansion rate $H\sim \frac{\sqrt{g}T^2}{M_{\rm P}} \ \ \, {\rm where} \ {\rm g}\Rightarrow {\rm \#} \ {\rm relativistic} \ {\rm species}$

i.e. freeze-out occurs at T $\sim m_B/45$, with:

$$\frac{n_B}{n_\gamma} = \frac{n_{\bar{B}}}{n_\gamma} \sim 10^{-19}$$

The observed ratio is 10⁹ times bigger for baryons, so we must invoke an initial *asymmetry*:

$$\mathcal{N}_B\equiv rac{n_B-n_{ar{B}}}{n_\gamma}\sim 10^{-9}$$

<u>Sakharov conditions for baryogenesis:</u> 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium

Classically baryon number can be violated by dim-6 operators in SM

When $T > M_W$ baryon number is also violated in the SM via sphaleron processes that preserve B – L, but violate B + L ...

$$L_{e}$$

$$L_{\mu}$$

$$L_{\tau}$$

$$Q_{1}$$

$$Q_{2}$$

$$\partial_{\mu}j_{i}^{\mu} = \partial_{\mu}(\bar{\psi}^{i}\gamma^{\mu}\psi^{i}) = \frac{g^{2}}{8\pi}W^{a\mu\nu}\tilde{W}^{a}_{\mu\nu}$$

$$\int V^{a\mu\nu}\tilde{W}^{a}_{\mu\nu}$$

$$\int V^{a\mu\nu}\tilde{W}^{a}_{\mu\nu}$$

...CP-violation is too weak, electroweak phase transition is a 'cross-over'

The observed matter-antimatter asymmetry requires BSM physics

The same or similar mechanism could generate ADM density

ncs

ADM model frameworks

Asymmetry transfer/sharing:

- B or L asymmetry generated at a high scale, e.g. Leptogenesis.
- Asymmetry transferred to DM
- Transfer operator decouples, asymmetry fixed
- Symmetric component is annihilated away

Transfer operator could be the sphalerons of the SM:

(e.g. Barr, Chivukula & Farhi 90)

Or transfer via effective operators inducing L or B number for DM:

$$\mathcal{O}_{B-L}\mathcal{O}_X$$

(e.g. Farrar & Zaharijas '05; Cosme, Lopez Honorez & Tytgat 05; March-Russell & West 05; Kaplan, Luty & Zurek '09)

Asymmetry co-generation:

• B and DM asymmetries generated from the same microphysics

(e.g Kaplan 92; Enqvist & McDonald '98; Hall, March-Russell & West 10; Hook 11; Cheung & Zurek 11; March-Russell & McCullough '11;Graesser, Shoemaker & Vecchi '11)

ADM from

...and NSD

Mads Toudal Frandsen - University of Oxford

ADM from Technicolor

(Nussinov 85)

The SM gauge group is augmented:

 $G_{SM} \rightarrow SU(3)_{\rm c} \times SU(2)_{\rm W} \times U(1)_{\rm Y} \times G_{\rm TC}$.

2 The Higgs sector of the SM is replaced:

$$\mathcal{L}_{Higgs} \rightarrow -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{Q}_{\rm L} \gamma_{\mu} D^{\mu} Q_{\rm L} + i \bar{Q}_{\rm R} \gamma_{\mu} D^{\mu} Q_{\rm R} + \dots$$

Minimal chiral symmetries: 3 GB's + Custodial + DM.

 $SU_L(2) \times SU_R(2) \times U_{TB}(1) \rightarrow SU_V(2) \times U_{TB}(1)$.

The Lightest Technibaryon, stable due to global symmetry $~U_{TB}(1)$ (eg $~TB\sim QQQ$ in a QCD-like or a pNGB state from MWT models $~T\sim QQ$)

ADM from Technicolor - Technibaryon

(Nussinov 85)

The asymmetric part of DM relic density is simply related to the baryon relic density $\Omega_{\chi} = (m_{\chi} N_{\chi}/m_{\rm B} N_{\rm B})\Omega_B$

Nussinov assumed asymmetries of same order

And a TeV mass TB state, as from scaled up QCD-TC

The predicted ratio of relic densities would then be

 $\mathcal{N}_{\chi} \sim \mathcal{N}_{B}$ $m_{\chi} \sim O(\text{TeV})$ $\Omega_{\chi} / \Omega_{B} \sim O(1000)$

The symmetric relic density effectively annihilated away by the TC dynamics – In general this is a constraint on ADM models but automatic in many models with NSD. See however (Belyaev, Frandsen, Sannino & Sarkar 10)

To get the observed relic density, asymmetries of same order today implies:

$$m_{\chi} \sim 5 \,\, {
m GeV}$$

This is close to the mass region seemingly favoured by DM detection `hints' and has generated a lot of recent model building activity

ADM from Technicolor - sphalerons

(Barr, Chivukula and Farhi 90)

Minimal chiral symmetries: 3 GB's + Custodial + DM.

 $SU_L(2) \times SU_R(2) \times U_{TB}(1) \rightarrow SU_V(2) \times U_{TB}(1)$.

With technifermions in $SU_W(2)$ doublets:

$$Q_{\rm L}^a = \begin{pmatrix} U^a \\ D^a \end{pmatrix}_{\rm L}, \ Q_{\rm R}^a = (U_{\rm R}^a, D_{\rm R}^a),$$
$$a = 1, \dots d(\mathcal{R}_{\rm TC})$$

The global $U_{TB}(1)$ is violated via the electroweak anomaly just as the baryon number:

$$\partial_{\mu}J^{\mu}_{TB} = rac{1}{2\sqrt{2}}rac{g^2}{32\pi^2}\epsilon_{\mu
u
ho\sigma}W^{\mu
u}W^{
ho\sigma}\;,\quad ext{and}\quad J^{\mu}_{TB} = rac{1}{2\sqrt{2}}\left(ar{U}\gamma^{\mu}U + ar{D}\gamma^{\mu}D
ight)$$

ADM and sphalerons

(Barr, Chivukula and Farhi 90)

This means there are 2 distinct 'mass solutions' for the correct relic density of ADM:

At a high scale, lepton number violation e.g. via Leptogenesis

Asymmetry transferred to DM via sphalerons

The final asymmetry Boltzmann suppressed below the DM if Sphalerons are still active:

 $T_{\rm Sph} > T > m_{\chi}$

So the TeV mass ADM envisaged by Nussinov remains an interesting possibility!

ADM and sphalerons

Figure schematic: Ω_{χ}/Ω_B depends on L/B & other new quantum numbers! The line is really a (wide) band (Barr, Chivukula and Farhi 90; Gudnason, Kouvaris & Sannino '05)

Framework generalizes: Asymmetry transfer/sharing mechanism

- Asymmetry generated at a high scale
- Asymmetry transferred to DM
- Transfer operator decouples and asymmetry is fixed
- Symmetric component is annihilated away

Light ADM from strong dynamics

Additionally motivated by current direct detection `hints'. In principle testable also via production at colliders, capture in stars, ...

DM is a pNGB from high (weak) scale strong interactions

(Gudnason, Kouvaris & Sannino '05; Foadi, MTF & Sannino 08; Ryttov & Sannino 08; Belyaev, MTF, Sarkar & Sannino 10; Del Nobile, Kouvars & Sannino '11)

Low scale strong interactions

(MTF, Sarkar and Schmidt-Hoberg 11)

Light ADM from strong dynamics

 S_1 States (constituents) carry weak charges and are connected to sphalerons

 S_2 States are SM singlets (Could be a Hidden sector/Hidden Valleys (Cline, Zurek,...) but could be directly connected to an S_1 sector with scale separation)

 $TB \rightarrow \chi_{TB} + X$ Preserves 'TB number' and is in equilibrium until $T \lesssim T_{sph}$ Decay mode could be from strong dynamics itself (MTF, Sarkar and Schmidt-Hoberg 11)

pNGB ADM from Technicolor

(Sannino & collaborators 05;...)

'Minimal Dark Matter' scenarios for ADM

(Barr, chivukula & Farhi 90)

(Gudnason, Kouvaris & Sannino 05; MTF & Sannino 09)

A candidate is the pNGB $T^0 \sim \chi_{TB}$

Or models with two intrinsic scales

(MTF, Sarkar and Schmidt-Hoberg 11)

in models with pseudo-real representation

General analysis of signals and the annihilation cross-section:

(Ryttov and Sannino 09)

(Foadi, MTF & Sannino 08; Belyaev, MTF, Sarkar & Sannino 10, Del Nobile, Kouvars & Sannino '11)

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T \;, \quad U_R^{+1/2} \;, \; D_R^{-1/2}$$

Can group minimal models by representation \mathcal{R} of technifermions under TC gauge group \mathcal{G}_{TC}

Mads Toudal Frandsen - University of Oxford

ADM signatures

- Direct detection no generic difference between ADM and symmetric DM
- Collider signatures not generic but

 for ADM from NSD expect resonance patterns in met signals.
 ADM with baryon number, B-violating processes at LHC
- Indirect detection generic difference:

-No annihilation signals in Galaxy, possibly decays

-No annihilation signals from stars,

-larger DM build-up and different effects on e.g. heat transport in stars.

...but indirect signals very challenging

Cogent sees more events than expected at low energies and hints of annual modulation

CRESST-II sees more events than expected at low energies

Hints of light DM from direct detection

(MTF et al 11; Farina et al 11; Fox et al 11; Schwetz & Zupan 11; Fornengo et al 11; talks by Kolb and Schnee this conference)

Possible to reduce constraints from a specific target, e.g. XENON, by choosing appropriate value of the DM-nucleon couplings f_n/f_p

Mads Toudal Frandsen - University of Oxford

DM-nucleus interactions from general vector mediator R

Possible to suppress scattering on a specific target By choosing $f_{n,p}$ appropriately!

$$\sigma_N = \frac{\mu_{\chi N}^2}{\mu_{\chi n}^2} \left(Z \frac{f_p}{f_n} + A - Z \right)^2 \sigma_n$$

Proton/neutron couplings and quark couplings after integrating out R:

$$f_p = 2b_u^{\rm V} + b_d^{\rm V} \ , \ f_n = 2b_d^{\rm V} + b_u^{\rm V} \ . \qquad b_f^{\rm A,\rm V} = b_{fR}^{\rm A,\rm V} + b_{fZ}^{\rm A,\rm V} = \frac{g_{\chi R}^{\rm A,\rm V}g_{fR}^{\rm A,\rm V}}{m_R^2} + \frac{g_{\chi Z}^{\rm A,\rm V}g_{fZ}^{\rm A,\rm V}}{m_Z^2}$$

If vector mediator couples to isospin as e.g. QCD rho-meson, then $f_n/f_p = -1$

(MTF, Kahlhoefer, Schmidt-Hoberg & Sarkar 11)

Mads Toudal Frandsen - University of Oxford

(MTF, Kahlhoefer, Schmidt-Hoberg & Sarkar 11)

Hints from direct detection – CRESST-II update

(Kopp, Schwetz & Zupan 11; Kelso, Hooper & Buckley 11; MTF, Kahlhoefer, McCabe, Schmidt-Hoberg & Sarkar to appear)

(Goodman et al 10; Fox et al 10; DM at colliders vs direct detection Fortin et al 11; Rajaraman et al 11) ~~~~~ ATLAS 7 TeV, 1 fb⁻¹, HighPt If mediator mass M is heavy, ATLAS data q1000 can integrate it out and study ATLAS BG Svents / GeV our MC mono-photon/mono-jet signals DM signal 0.1 $\sigma_{1j} \sim egin{cases} lpha_s \, g_\chi^2 \, g_q^2 \, rac{1}{p_T^2} & M \lesssim p_T \ lpha_s \, g_\chi^2 \, g_q^2 \, rac{p_T^2}{M^4} & M \gtrsim p_T \end{cases}$ 300 500 400 600 700 Er [GeV] ATLAS 7TeV, 1fb-1 VeryHighPt 10^{-37} Solid : Observed 90% C. WIMP-nucleon cross section σ_N [cm²] Dashed : Expected ATLAS limits for vector interactions do not 10^{-38} 10-39 rule out `best fit regions' DAMA (a ± 339 10^{-40} CRESST CoGeNI However in principle they do for 10^{-4} $f_n/f_p = -0.7$ $\sigma_N \sim 10^{-38}$ 10-4 XENO $\alpha_s \overline{\chi} \chi G_{\mu\nu} G^{\mu\nu}$ 10^{-43} Constraints from colliders much weaker if XENON-10 10^{-4} mediator is light! (Fox et al 10) 10^{-4} Spin-independent 10 10^{2} 10^{-1} 10^{0} 10¹ 10^{3} WIMP mass m_{γ} [GeV] (Fox et al 11)

Mads Toudal Frandsen - University of Oxford

DM from NSD at colliders

The mediator of DM-nucleus scattering might couple dominantly to other states, e.g. Invisible Higgs strahlung

(Foadi, MTF & Sannino 08)

The resonance structure can discriminate against background (which dominate this process in SM)

Channels more model-dependent, but also more realistic in NSD models

ADM limits from compact stars

Limits from White Dwarves

Mads Toudal Frandsen - University of Oxford

ADM reduction of solar neutrino fluxes - `Neutrino spectroscopy'

(Spergel & Press 85; Faulkner & Gililand 85; MTF & Sarkar 10, Taoso et al 10, Cumberbatch et at 10, Silk & Lopes 10)

(Taoso et al 10)

The particle mass must be ~4-10 GeV to have an effect on energy transport (too light and they 'evaporate', too heavy and their orbits do not extend out far enough)

Same range as natural for light ADM scenario and hinted at by direct detection results!

Self-interacting dark matter has been invoked to reduce excessive substructure in simulations of collisionless dark matter (Spergel & Steinhardt '99)

This may or may not still be a relevant problem to address with DM properties

Summary II

- ADM motivated by the asymmetry of baryonic matter and the desire to explain $~\Omega_{DM}/\Omega_B\approx 5$
- New Strong Dynamics, e.g. Technicolor, natural framework for ADM
- Recent hints in direct detection experiments point to an interesting mass range for some classes of ADM models
- ADM from NSD has implications for collider searches, capture in stars, structure formation...
- ADM scenario much less investigated than standard WIMP paradigm – much to do!