Dark Matter Stability From FLAvor SYmmetry

University of Wurzburg

Bruxelles, 1st March 2013

Z2 is typically imposed by hand

It seems there are no motivations to assume an ad-hoc symmetry

since in the SM there are stable particles without introducing any ad hoc symmetry photon, electron, neutrino, proton

possible origin of
DM stability :- R - parity in MSSM (LSP)
- $U(1)_{B-1}$ from GUT

Hambye 1012.4587

DM stability from flavor symmetry

Outline of the talk

- Flavor problem
- Flavor symmetry: TBM & discrete groups
- Stability of DM from flavor symmetry breaking
- Examples
- -Conclusions

flavor problem & flavor symmetry

Fermion mass hierarchies

André de Gouvêa

Origin of neutrino mass

lepton vs quark mixing

The flavor problem

- why three families?
- why fermion mass hierarchies?
 - in the SM there is no reason to have very different masses
- why quarks and leptons mix?
- why quarks/lepton mixing are so different?
 - neutrino are Dirac or Majorana?
 - what is the absolute neutrino mass scale?
 - what is the neutrino mass hierarchy?
 - CP is violated in the lepton sector?

Different approaches to flavor problem

- correlations between mixing and masses like in texture zero
- grand unification
- flavor symmetries, abelian, non-abelian, continue, discrete

-

- it is not a problem: no reason why $m_e \ll m_{top}$

The flavor symmetry $SU_c(3) \times SU_L(2) \times U_Y(1) \times G_f$

Flavor symmetry & flavor problem: status

The flavor "problem" is still there:

- why three families? No idea irrep = 3 of flavor symm
- why fermion mass hierarchies? No idea FN?
- why quarks and leptons mix? May be flavor symm breaking
- why quarks/lepton masses & mixing are so different? May be neutrino are Majorana (seesaw?) & flavor symm

We have many good models for quarks & lepton mixing: too many!

Most of these models are phenomenologically equivalent May be Onubb, LVF, LHC,....,GUT, DM help us to distinguish

In a quite near future experiments could tell us if

Neutrino are Majorana, their mass hierarchy and CP phase, Moreover we will have more info about Higgs sector *Will this fix the neutrino sector* **??**

TBM & discrete groups

For about 10 years data have biased us towards <u>TBM</u>

University of Wurzburg

2011 vs 2012 neutrino mixing data

S.Morisi

University of Wurzburg

$$U_{\text{HPS}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

-
$$\theta_{13}$$
 is not zero

- Θ_{23} is not maximal @ 1*sigma*

S.Morisi

University of Wurzburg

<u>Deviation</u> <u>of TBM</u> Different ansatz: trimaximal, tetramaximal, symmetric mixing, hexagon mixing, bimaximal, golden,.. Albright,Dueck,Rodejohann 1004.2798

Gf

Bi-large Boucenna,M,Tortola,Valle 1206.6678

Bi-Trimaximal King, Luhn, Stuart 1207.5741

Anarchy?

Hall,Murayama,Weiner,PRL Altarelli, Feruglio,Masina,JHEP Gouvea , Murayama 1204.1249

Discrete groups & TBM

order	groups
6	$S_3 \equiv D_3$
8	$D_4, Q = Q_4$
10	D_5
12	$D_6, Q_6, T \equiv A_4$
14	D_7
16	$D_8, Q_8, Z_2 \times D_4, Z_2 \times Q$
18	$D_9, Z_3 \times D_3$
20	D_{10}, Q_{10}
22	D_{11}
24	$D_{12}, Q_{12}, Z_2 \times D_6, Z_2 \times Q_6, Z_2 \times T, Z_3 \times D_4, Z_3 \times Q, Z_4 \times D_3, S_4 \times D_4, Z_5 \times Q, Z_4 \times D_5, Z_5 \times Q, Z_4 \times D_5, Z_5 \times Q, Z_5 \times Q$
26	D_{13}
28	D_{14}, Q_{14}
28 30	D_{14}, Q_{14} $D_{15}, D_5 \times Z_3, D_3 \times Z_5$

- **S3** Grimus, Lavoura, JHEP0904 Mohapatra, Nasri, Yu PLB639
- S4 Lam PRL101 Bazzocchi, Morisi PRD80
 - Feruglio,Hagedorn,Lin,Merlo NPB775 Car, Frampton Aranda,Carone,Lebed PLB474

D(27) Medeiros, King, Ross PLB648

for a review of the properties of these groups see Ishimori,Kobayashi,Ohki,Okada, Shimizu,Tanimoto 1003.3552

A group **G={A,B,C,...}** which consist of a finite number of elements **g** is a *finite group if*

- $\overset{\bigstar}{\sim}$ the set is close with respect to the composition law
- \Rightarrow associative
- \Rightarrow cancelling rule: A X = B X and Y A = Y B \implies A = B

To each finite group corresponds a multiplication table

Not all the product are independent:

 $A C = E, C B = E, B B = A, C B = E, A E = D \longrightarrow C A = D$

It exists a set of **elements** and a set of **independent relations** associated to each multiplication table

Generator of the groups

$$I, A, A^{2}, C, AC, CA$$

$$I A B C D E$$

$$I = I A B C D E$$

$$A = A A B I E C D$$

$$A^{2} = B B I A D E C$$

$$C = C C D E I A B$$

$$CA = D D E C B I A$$

$$A C = E E C D A B I$$

Set of elements *A*, *C*

Set of relations
$$A^3 = C^2 = (AC)^2 = I$$

Every finite group is completely determinate from

- a set of generators
- a set relations

It is invariant under *n*-rotations (A generator of rotations)

$$0, \ \frac{2\pi}{n}, \ 2\frac{2\pi}{n}, \ ..., (n-1)\frac{2\pi}{n} \quad \Rightarrow \quad I, \ A, \ A^2, \dots A^{n-1}; \quad A^n = I$$

University of Wurzburg

We can reflect the lamina around an axis (B generator of the reflaction)

$$B \Rightarrow B^2 = I$$

reversing + rotate \equiv (rotate)⁻¹ + reversing $\Rightarrow AB = BA^{-1} \Rightarrow (AB)^2 = I$

University of Wurzburg

All the transformations (elements of the group) are

$$\begin{array}{ll} B^{\alpha}\,A^{\beta} & (\alpha=0,1;\beta=0,1,..,n-1)\\ \\ \begin{array}{l} \text{generators}\\ \text{get of relations} & A^n=B^2=(AB)^2=I \end{array} \end{array}$$

S.Morisi

Stability of DM from flavor symmetry breaking

1) $G_f \longrightarrow Z_N (Z_2)$

at least one component of *r* is <u>odd</u> under Z2

thetraedron rotations

12 rotations

Smallest group with triplet irrep 3

S.Morisi

University of Wurzburg

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \quad S\langle \eta \rangle = \langle \eta \rangle \quad \longleftrightarrow \quad A_4 \longrightarrow Z_2$$

$$S^2 = T^3 = (ST)^3 = 1$$
 generator of \mathbb{Z}_2

$$\mathbf{S} = \begin{pmatrix} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \langle \eta \rangle \sim (1, 0, 0)$$

2) $r = (r1, r2, r3, ...) \rightarrow$

at least one component of *r* is *odd* under Z2

A4 irrep: 1, 1', 1", 3

 Z_2 : $3 = (a_1, a_2, a_3) \rightarrow (+a_1, -a_2, -a_3)$

The field in **a**² or **a**³ can be our DM candidate

How a 3 transforms under the Z2 of A4

$$S^{2} = T^{3} = (ST)^{3} = 1 \quad \longleftrightarrow \quad S = \begin{pmatrix} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

can be our DM candidate

2) r = (r1, r2, r3,....) →

at least one component of *r* is <u>odd</u> under Z2

- 1 S = 1 T = 1
- 1' S = 1 $T = e^{i2\pi/3} \equiv \omega$
- $1'' \qquad S = 1 \qquad T = e^{i4\pi/3} \equiv \omega^2$

are <u>even</u> under Z2

DM can not be a singlet of A4
The Model: discrete dark matter

Altarelli, Feruglio Nucl. Phys. B720 (2005)

Hirsch, Morisi, Peinado, Valle, PRD82 (10')

A4 is spontaneously broken in

Z2 in the charged sector Z3 broken Z2 in the neutrino sector

UNDER VIEW AND A CONTRACT OF A

Matter assignment: charged sector

charged leptons in *singlets* of A4

charged lep mass matrix *diagonal* and *Z2* invariant

The model

DM

 $y_1^{\nu}L_e(N_T\eta)_1 + y_2^{\nu}L_{\mu}(N_T\eta)_{1''} + y_3^{\nu}L_{\tau}(N_T\eta)_{1'}$

The model

DM

	L_e	L_{μ}	L_{τ}	l_e^c	l^c_μ	$l_{ au}^c$	N_T	N_4	\hat{H}	η
SU(2)	2	2	2	1	1	1	1	1	2	2
A_4	1	1′	1″	1	1″	1′	3	1	1	3

1 x 1 x 3 is not A4 invariant

$3 \times 3 = 1 + 1' + 1'' + 3 + 3$

DM does not couple to charged leptons

DM couplings

Inert DM – Higgs portal

$$V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

Barbieri, Hall, Rychkov, PRD74 (06') Lopez Honorez, Nezri, Oliver, Tytgat, JCAP 0702 (07') Gustafsson, Lundstrom, Bergstrom, Edsjo, PRL99 (07') Lundstrom, Gustafsson, Edsjo PRD79 (09') Andreas, Arina, Hambye, Ling,Tytgat, PRD82 (10') Chu, Hambye, Tytgat, JCAP1205 (12') Gustafsson, Rydbeck, Lopez-Honorez, Lundstrom PRD86 (12')

Four Higgs in the DDM

- $V = \mu_{\eta}^{2} \eta^{\dagger} \eta + \mu_{\hat{H}}^{2} \hat{H}^{\dagger} \hat{H} + \lambda_{1} [\hat{H}^{\dagger} \hat{H}]_{1}^{2} + \lambda_{2} [\eta^{\dagger} \eta]_{1}^{2} + \lambda_{3} [\eta^{\dagger} \eta]_{1'} [\eta^{\dagger} \eta]_{1''}$
 - + $\lambda_4 [\eta^{\dagger} \eta^{\dagger}]_{1'} [\eta \eta]_{1''} + \lambda_{4'} [\eta^{\dagger} \eta^{\dagger}]_{1''} [\eta \eta]_{1'} + \lambda_5 [\eta^{\dagger} \eta^{\dagger}]_1 [\eta \eta]_1 + \lambda_6 ([\eta^{\dagger} \eta]_{3_1} [\eta^{\dagger} \eta]_{3_1} + h.c.)$
 - $+ \lambda_{7} [\eta^{\dagger} \eta]_{3_{1}} [\eta^{\dagger} \eta]_{3_{2}} + \lambda_{8} [\eta^{\dagger} \eta^{\dagger}]_{3_{1}} [\eta \eta]_{3_{2}} + \lambda_{9} [\eta^{\dagger} \eta]_{1'} [\hat{H}^{\dagger} \hat{H}] + \lambda_{10} [\eta^{\dagger} \hat{H}]_{3_{1}} [\hat{H}^{\dagger} \eta]_{3_{1}}$
 - $+ \lambda_{11}([\eta^{\dagger}\eta^{\dagger}]_{1}\hat{H}\hat{H} + h.c.) + \lambda_{12}([\eta^{\dagger}\eta^{\dagger}]_{3_{1}}[\eta\hat{H}]_{3_{1}} + h.c.) + \lambda_{13}([\eta^{\dagger}\eta^{\dagger}]_{3_{2}}[\eta\hat{H}]]_{3_{1}} + h.c.) + \lambda_{14}([\eta^{\dagger}\eta]_{3_{1}}\eta^{\dagger}\hat{H} + h.c.) + \lambda_{15}([\eta^{\dagger}\eta]_{3_{2}}\eta^{\dagger}\hat{H} + h.c.) +$

Boucenna, Hirsch, Morisi, Peinado, Taoso, Valle, JHEP 1105 (11')

Relic density – direct detection

Boucenna, Hirsch, Morisi, Peinado, Taoso, Valle, JHEP 1105 (11')

Neutrino phenomenology

$$m_D = \begin{pmatrix} x_1 & 0 & 0 & x_4 \\ x_2 & 0 & 0 & 0 \\ x_3 & 0 & 0 & 0 \end{pmatrix}, \quad M_R = \begin{pmatrix} M_1 & 0 & 0 & 0 \\ 0 & M_1 & 0 & 0 \\ 0 & 0 & M_1 & 0 \\ 0 & 0 & 0 & M_2 \end{pmatrix}$$

$$m_{\nu} = -m_{D_{3\times4}} M_{R_{4\times4}}^{-1} m_{D_{3\times4}}^{T} \equiv \begin{pmatrix} y^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$$

IH: $m_3 = 0$ $V_3 \sim \begin{pmatrix} 0 \\ -b/c \\ 1 \end{pmatrix}$ $\theta_{13} = 0$ 0.03 eV< 0nubb <0.05 eV

Hirsch, Morisi, Peinado, Valle, PRD (10')	Discrete DM (DDM)
Boucenna, Hirsch, Morisi, Peinado, Taoso, Valle JHEP (11')	relic density, detection
Meloni, Morisi, Peinado, PLB (11')	different neutrino pheno
Meloni, Morisi, Peinado, PLB (11')	A4 \rightarrow D4
Adelhart Toorop, Bazzocchi, Morisi, NPB (12')	quark sector
Boucenna, Morisi, Peinado, Shimizu, Valle, PRD (12')	A4 \rightarrow Delta(54)

Kajiyama, Okada NPB(11), Adulpravitchai, Batell, Pradler PLB(11), Kajiyama, Okada, Toma EPJC(11) Batell, Pradler, Spannowsky JHEP(11), Lavoura JPG(12), Kajiyama, Kannike, Raidal PRD(12), Eby, Frampton PLB(12), Lovrekovic (12)

Is it possible to assign L to $\underline{irrep > 1}$? $L_2 N_1 \eta_3$ **A**4 3 **Z2** ÷

DM can decays into light neutrinos !

We search for a group G that contains at least <u>two irrep</u>

 $r_b \dim(r_{a,b}) >$ r_a

all its components are invariant under a subgroup Z_N of G

at least one of its component transforms with respect to ZN DM candidate

D(54) has a subgroup

 $a^3 = a'^3 = I$

Boucenna, M, Peinado, Shimizu, Valle PRD (12)

$$\begin{array}{ll} 2_k \times 2_k = 1_+ + 1_- + 2_k & \quad \mbox{Stable} \\ 2_1 \times 2_2 = 2_3 + 2_4 & \quad \mbox{Inert: no coupling with fermions} \end{array}$$

$$\mathcal{L}_{\ell} = y_1 \overline{L}_e e_R H + y_2 \overline{L}_e l_D \chi + y_3 \overline{L}_D e_R \chi + y_4 \overline{L}_D l_D H + y_5 \overline{L}_D l_D \chi$$

 $\mathcal{L}_{\nu} = y_b \overline{L}_D \overline{L}_D \Delta + y_a \overline{L}_D L_e \Delta$

Sum mass rule

 $m_1^{\nu} + m_2^{\nu} = m_3^{\nu}$

Barry, Rodejohann NPB 842 (2011) Dorame, Meloni, M, Peinado, Valle NPB861 (2011)

Outlook

University of Wurzburg

Lavoura, M, Valle accepted in JHEP

SU(2) is the <u>double cover</u> of SO(3)

1, <u>2</u>, 3, <u>4</u>,... irrep

1, **3**, **5**, *irrep*

Lavoura, M, Valle accepted in JHEP

SU(2) is the <u>double cover</u> of SO(3)

Lavoura, M, Valle accepted in JHEP

SU(2) is the <u>double cover</u> of SO(3)

vectorial

<u>spinorial</u>

\otimes	1 ₁	1_2	1 ₃	3	2_1	2_2	2_3
1 ₁	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1_2		1_3	1_1	<u> </u>	2_2	2_3	2_1
1_3			1_2	3	2_3	2_1	2_2
3				${f 3},{f 3},{f 1}_1,{f 1}_2,{f 1}_3$	$\boldsymbol{2}_1, \boldsymbol{2}_2, \boldsymbol{2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$
2_1					$3,1_1$	${\bf 3}, {\bf 1}_2$	$3,1_3$
2_2						${\bf 3},{\bf 1}_3$	${\bf 3}, {\bf 1}_1$
2_3							${\bf 3},{\bf 1}_2$

An example: T'

\otimes	1 ₁	1_2	1 ₃	3		2_1	2_2	2_3
1 ₁	1_1	1_2	1_3	3		2_1	2_2	2_3
1_2		1_3	1 ₁	3		2_2	2_3	2_1
1_3			1_2	3		2_3	2_1	2_2
3				${f 3},{f 3},{f 1}_1,{f 1}_2,{f 1}_3$	2	$2_1, 2_2, 2_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$
2_1						$3,1_1$	$3,1_2$	$3,1_3$
2_2							${\bf 3},{\bf 1}_3$	${\bf 3}, {\bf 1}_1$
2_3								$3,1_2$

An example: T'

\otimes	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1 ₁	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1_2		1_3	1_1	3	2_2	2_3	2_1
1_3			1_2	3	2_3	2_1	2_2
3				${f 3},{f 3},{f 1}_1,{f 1}_2,{f 1}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$
2 ₁					$3,1_1$	${\bf 3}, {\bf 1}_2$	$3,1_3$
2_2						${\bf 3},{\bf 1}_3$	$3,1_1$
2_3							${\bf 3}, {\bf 1}_2$

An example: T'

\otimes	1 ₁	1_2	1_3	3	2_1	2_2	2 ₃
1 ₁	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1_2		1_3	1 ₁	3	2_2	2_3	2_1
1_3			1_2	3	2_3	2_1	2_2
3				${f 3},{f 3},{f 1}_1,{f 1}_2,{f 1}_3$	$\boldsymbol{2}_1, \boldsymbol{2}_2, \boldsymbol{2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	$old 2_1, old 2_2, old 2_3$
2_1					$3,1_1$	${\bf 3},{\bf 1}_2$	$3,1_3$
2_2						$3,1_3$	$\overline{3,1_1}$
2							2 1

An example: T'

Your favorite A4 model

\otimes	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1 ₁	1 ₁	1_2	1_3	3	2_1	2_2	2_3
1_2		1_3	1 ₁	3	2_2	2 ₃	2_1
1_3			1_2	3	2 ₃	2_1	2_2
3				${f 3},{f 3},{f 1}_1,{f 1}_2,{f 1}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$	${f 2}_1, {f 2}_2, {f 2}_3$
2_1					$3,1_1$	$3,1_2$	$3,1_3$
2_2						$3,1_3$	$3,1_1$
2_3							${\bf 3}, {\bf 1}_2$

Conclusions

Backup slides

Neutrino in discrete DM model

	L_e	L_{μ}	L_{τ}	l_e^c	l^c_μ	$l_{ au}^{c}$	N_T	N_4	H	η
SU(2)	2	2	2	1	1	1	1	1	2	2
A_4	1	1′	1''	1	1''	1'	3	1	1	3

$$\mathcal{L} = y_e L_e l_e^c \hat{H} + y_\mu L_\mu l_\mu^c \hat{H} + y_\tau L_\tau l_\tau^c \hat{H} + y_1^\nu L_e (N_T \eta)_1 + y_2^\nu L_\mu (N_T \eta)_{1''} + y_3^\nu L_\tau (N_T \eta)_{1'} + y_4^\nu L_e N_4 \hat{H} + M_1 N_T N_T + M_2 N_4 N_4 + \text{h.c.}$$

$$m_D = \begin{pmatrix} x_1 & 0 & 0 & x_4 \\ x_2 & 0 & 0 & 0 \\ x_3 & 0 & 0 & 0 \end{pmatrix}, \quad M_R = \begin{pmatrix} M_1 & 0 & 0 & 0 \\ 0 & M_1 & 0 & 0 \\ 0 & 0 & M_1 & 0 \\ 0 & 0 & 0 & M_2 \end{pmatrix}$$

$$m_{\nu} = -m_{D_{3\times4}} M_{R_{4\times4}}^{-1} m_{D_{3\times4}}^{T} \equiv \begin{pmatrix} y^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$$

D(54) isomorphic to $\rightarrow (Z_3 \times Z_3) \rtimes S_3$

N=3

$$a^{N} = a'^{N} = b^{3} = c^{2} = (bc)^{2} = e,$$

$$aa' = a'a,$$

$$bab^{-1} = a^{-1}a'^{-1}, \quad ba'b^{-1} = a,$$

$$cac^{-1} = a'^{-1}, \quad ca'c^{-1} = a^{-1}.$$

Ishimori et al., Prog. Theor. Phys. Suppl. 183

	\overline{L}_e	\overline{L}_D	e_R	l_D	Н	χ	η	Δ
SU(2)	2	2	1	1	2	2	2	3
$\Delta(54)$	1_+	2_1	1_+	2_1	1_+	2_1	$\mathbf{2_3}$	2_1

	$Q_{1,2}$	Q_3	(u_R, c_R)	t_R	d_R	s_R	b_R
SU(2)	2	2	1	1	1	1	1
$\Delta(54)$	2_1	1_+	2_1	1_+	1_	1_+	1_+

We assume real parameters

$$M_{\ell} = \begin{pmatrix} a & br & b \\ cr & d & e \\ c & e & dr \end{pmatrix} \qquad M_{d} = \begin{pmatrix} ra_{d} & rb_{d} & rd_{d} \\ -a_{d} & b_{d} & d_{d} \\ 0 & c_{d} & e_{d} \end{pmatrix}$$

$$r \text{ common to the two sectors}$$

$$0.1 < r < 0.2$$

$$M_u = \begin{pmatrix} ra_u & b_u & d_u \\ b_u & a_u & rd_u \\ c_u & rc_u & e_u \end{pmatrix}$$

8 parameters

 $M_{\nu} \propto \begin{pmatrix} 0 & \delta & \delta \\ \delta & \alpha & 0 \\ \delta & 0 & \alpha \end{pmatrix}$

10 parameters

Relic density

Boucenna *et al.*, *JHEP1105 (2011)*

Relic density

Boucenna *et al.*, *JHEP1105 (2011)*

Relic density

Boucenna *et al.*, *JHEP1105 (2011)*

Relic density

 $0.09 \le \Omega h^2 \le 0.13$

Direct detection

Boucenna *et al.*, *JHEP1105 (2011)*

Quarks

Adelhart, Bazzocchi, Morisi 1104.5676

$$\sum \frac{f_{ij}}{\Lambda^2} (\overline{Q}_i \hat{H}) d_j(\eta^{\dagger} \eta) + \frac{f_{ij}'}{\Lambda^2} (\overline{Q}_i \eta) d_j(\eta^{\dagger} \hat{H}) + \frac{f_{ij}''}{\Lambda^2} (\overline{Q}_i \eta) d_j(\hat{H}^{\dagger} \eta)$$

$$M_{d} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} + \frac{v_{H}v_{\eta}^{2}}{\Lambda^{2}} \begin{pmatrix} h_{dd} & h_{ds} & h_{db} \\ h_{sd} & h_{ss} & h_{sb} \\ h_{bd} & h_{bs} & h_{bb} \end{pmatrix} + \mathcal{O}(1/\Lambda^{4}),$$

$$h_{ds} \frac{v_H v_\eta^2}{\Lambda^2} = \lambda_C m_s$$
1-10 TeV

Quarks: FCNC

Outlook for DDM: embedding into GUT

 $\begin{aligned} \mathcal{L}_{down} &= y_1^{l,d} T_1 F_1 \bar{5}_H + y_2^{l,d} T_2 F_2 \bar{5}_H + y_3^{l,d} T_3 F_3 \bar{5}_H + y_1^{\prime l,d} T_1 F_1 4 5_H + y_2^{\prime l,d} T_2 F_2 4 5_H + y_3^{\prime l,d} T_3 F_3 4 5_H; \\ \mathcal{L}_{up} &= y_1^u T_1 T_1 5_H + y_2^u T_2 T_3 5_H + y_1^{\prime u} T_1 T_1 4 5_H + y_2^{\prime u} T_2 T_3 4 5_H; \\ \mathcal{L}_{\nu} &= y_1^{\nu} T_1 N_4 5_H + y_2^{\nu} T_2 N_4 5_H + y_3^{\nu} T_3 N_4 5_H + y_1^{\nu} T_1 N_T 5_\eta + M_1 N_T N_T + M_2 N_4 N_4. \end{aligned}$

it is possible to fit the masses $m_e = y_1^{l,d} \langle 5_H \rangle - 3y_1^{\prime l,d} \langle 45_H \rangle; \quad m_\mu = y_2^{l,d} \langle 5_H \rangle - 3y_2^{\prime l,d} \langle 45_H \rangle; \quad m_\tau = y_3^{l,d} \langle 5_H \rangle - 3y_3^{\prime l,d} \langle 45_H \rangle;$

$$m_{d} = y_{1}^{l,d} \langle 5_{H} \rangle + y_{1}^{\prime l,d} \langle 45_{H} \rangle; \quad m_{s} = y_{2}^{l,d} \langle 5_{H} \rangle + y_{2}^{\prime l,d} \langle 45_{H} \rangle; \quad m_{b} = y_{3}^{l,d} \langle 5_{H} \rangle + y_{3}^{\prime l,d} \langle 45_{H} \rangle;$$

 $m_u = y_1^u \langle 5_H \rangle; \qquad m_c = y_2^u \langle 5_H \rangle - y_2'^u \langle 45_H \rangle; \qquad m_t = y_2^u \langle 5_H \rangle + y_2'^u \langle 45_H \rangle.$

CKM?

University of Wurzburg