Measuring neutrino masses with a photometric redshift survey

Yvonne Y. Y. Wong RWTH Aachen

[J. Hamann, S. Hannestad & Y³W, JCAP 1211 (2012) 052]

Theory seminar, Université Libre de Bruxelles, February 1, 2013

The cosmic pie(s)...

The ACDM model is the simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

The cosmic neutrino background...

Embedding the **standard model** in **FLRW cosmology** necessarily leads to a thermal neutrino background (decoupling at T ~ 1 MeV). Fixed by weak interactions

Present temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} = 1.95 \,\mathrm{K}$$

Number density per flavour:

$$n_{\rm v} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\rm v}^3 = 112 \ {\rm cm}^{-3}$$

The cosmic neutrino background: energy density...

The present-day neutrino energy density depends on whether the neutrinos are relativistic or nonrelativistic.

- Nonrelativistic (m >> T ~ 10^{-4} eV):

Neutrino dark matter (not part of the vanilla ΛCDM)

Flavour oscillations imply nonzero neutrino mass...

Atmospheric & solar neutrino oscillations indicate that at least one neutrino mass eigenstate has a mass of > 0.05 eV.

Cosmological implications:

- Relic neutrinos are nonrelativistic today.
- Present-day energy density:

$$\Omega_{v} = \frac{m_{v}}{93 h^{2} \,\mathrm{eV}} > 0.1 \,\%$$

Tritium β -decay limit on neutrino mass...

Tritium β **-decay** end-point spectrum measurements impose an upper limit on the effective mass of the electron neutrino.

 $\max \sum m_{v} \sim 7 \text{ eV} \rightarrow \max \Omega_{v} \sim 15\%$

Lobashev [Troitsk] 2003; Krauss et al. [Mainz] 2005

Neutrino dark matter is hot...

Neutrino dark matter come with large **thermal motion**.

• Characteristic thermal speed:

$$v_{\text{thermal}} = \frac{T_v}{m_v} \simeq 50.4(1+z) \left(\frac{\text{eV}}{m_v}\right) \text{ km s}^{-1}$$

Structures on scales below the (maximum) free-streaming scale could **not** have been formed via gravitational instability:

$$\lambda_{\rm FS,max} = 31.8 \,\Omega_{m,0}^{-1/2} \left(\frac{\rm eV}{m_{\rm v}}\right)^{1/2} h^{-1} \,\rm Mpc$$

cf galaxies (~100 kpc), galaxy clusters (~ 1 Mpc)

http://www.itp.uzh.ch/

Why bother with neutrino dark matter then?

Because it's there.

- Neutrino dark matter = culmination of FLRW cosmology + SM + terrestrial experiment, a prediction as fundamental as the prediction of the cosmic microwave background.
 - Confirmation of FLRW cosmology
 - Determination of neutrino mass from cosmology
- You have to deal with it even if you don't care about it.
 - When performing parameter inference, the presence of neutrino dark matter may shift the values of those cosmological parameters you care about, e.g., inflation parameters, dark energy properties, etc.

Plan...

Looking for neutrino dark matter

- Direct detection
- Indirect detection

Euclid sensitivity forecast

• Why Euclid is so good for the determination of the neutrino mass from cosmology.

Disclaimer: We are dealing with subdominant, sub-eV to eV-mass neutrino dark matter here! The bulk of the DM content is explained by something else.

1. Looking for neutrino dark matter...

Direct detection of neutrino dark matter...

... is a difficult business.

- Small interaction cross-section:
- Neutrino energy too small to cross most detection thresholds.
 - Conventional WIMP detection techniques don't work here.

A zero threshold process?

• One unique candidate here...

cf WIMP detection, ~ 10⁻⁴⁶ cm² $\sigma_{vN} \sim \frac{G_F^2 m_v^2}{\pi} \simeq 10^{-56} \left(\frac{m_v}{eV}\right)^2 \text{ cm}^2$ $\Delta p \sim m_v v_{\text{earth}} \simeq 10^{-3} m_v$ Speed of Earth with respect to the CMB, ~ 370 km s⁻¹

Neutrino capture with KATRIN...

Indirect detection...

Exploit the effects of (subdominant) neutrino dark matter on precision cosmological observables:

- Cosmic microwave background anisotropies
 - Effects on the evolution of the homogeneous background
- Large-scale matter distribution
 - Effects on the level of the inhomegeneities

Neutrino dark matter and the CMB anisotropies...

Background effect

- eV-mass neutrinos become nonrelativistic close to equality and photon decoupling.
- A non-trivial transition from radiation to matter domination.
 - \rightarrow Affects sound horizon.
 - → A nonstandard early Integrated Sachs-Wolfe effect.

Sachs-Wolfe effect:

Integrated Sachs-Wolfe (ISW) effect:

Indirect detection...

Exploit the effects of (subdominant) neutrino dark matter on precision cosmological observables:

- Cosmic microwave background anisotropies
 - Effects on the evolution of the homogeneous background
- Large-scale matter distribution
 - Effects on the level of the inhomegeneities

Subdominant neutrino DM and large-scale structure...

The presence of CDM acts as a source of density perturbations.

- No complete erasure of perturbations on small scales.
- But thermal motion of the relic neutrinos still makes neutrino clustering difficult.

Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes:

 \rightarrow Free-streaming (non-clustering) neutrinos slows down the growth of density perturbations on scales $\lambda << \lambda_{FS}$

The presence of neutrino dark matter induces a step-like feature in the **spectrum** of density perturbations.

Change in the total matter power spectrum relative to the massless case:

$$\frac{\Delta P_{m}}{P_{m}} \equiv \frac{P_{f_{v}\neq0}(k) - P_{f_{v}=0}(k)}{P_{f_{v}=0}(k)}$$

(linear neutrino evolution)

Linear perturbation theory:

With nonlinear corrections:

Brandbyge, Hannestad, Haugbolle & Thomsen 2008; Viel, Haehnelt & Springel 2010; Bird, Viel & Haehnelt 2012 Brandbyge & Hannestad 2009, 2010; Ali-Haimoud & Bird 2012 Semi-analytical: Loops and beyond...

Saito et al. 2008; Y³W 2008; Shoji & Komatsu 2009 Lesgourgues, Matarrese, Pietroni & Riotto 2009

Present constraints...

Hannestad, Mirizzi, Raffelt & Y³W 2010 **ACDM+neutrino mass (7 parameters) CMB** only (WMAP7+ACBAR+BICEP+QuaD) + **LSS power spectrum** (SDSS7 LRG) + LSS + **HST determination of H**₀

WMAP9 numbers are very similar Hinshaw et al. [WMAP9] 2012

Present constraints...

Future sensitivities...

2. Euclid sensitivity forecast...

ESA Euclid mission selected for implementation...

Launch planned for 2019.

- 6-year lifetime
- 15000 deg² (>1/3 of the sky)
- Galaxies and clusters out to z~2
 - Photo-z for 1 billion galaxies
 - Spectro-z for 50 million galaxies
- Optimised for weak gravitational lensing (cosmic shear)

ESA Euclid mission selected for implementation...

<u>Cosmic shear</u>

(weak gravitational lensing of galaxies)

But everything I am about to say applies also to similar surveys such as LSST.

Weak lensing of galaxies/Cosmic shear...

Distortion (magnification or stretching) of distant galaxy images by **foreground matter**.

• Sensitive to both luminous and dark matter (no bias problem).

Lensed

Shear map

Weak lensing theory predicts:

Shear map \rightarrow Convergence map (projected mass)

Weak lensing theory predicts:

Convergence (or shear) power spectrum:

Tomography = bin galaxy images by redshift

• Photometric redshifts for ~ 1 billion galaxies in Euclid survey.

Shear power auto & cross-spectra for 3 redshift bins:

- High redshift images are lensed more.
- Large cross-correlation signal.

Signal dominated

measurement expected up to $\ell \sim 2000$.

• Nonlinear corrections are important for the cosmic shear signal.

Our cosmic shear forecast...

We assume **nonlinear corrections** will be known to <1% accuracy up to ℓ = 2000.

 Mock nonlinear corrections from HaloFit. Smith et al. 2003

Realistic assumption?

- Collisionless simulations are relatively easy to do.
- But beware of dissipative baryon physics at *l* > 1000 (believed to be a 1% effect, but who knows).

Tomography: 2 redshift bins (no gain with more bins).

HaloFit = A fitting function calibrated against a set of N-body simulations

Photo-z galaxy survey...

The **same galaxy images** used to determine the shear power spectra can be analysed for their own clustering properties.

• **Photometric-z uncertainty**: $dz = 0.03 (1 + z) \rightarrow \text{Loss of small-scale information in the line-of-sight direction.}$

We account for this loss by considering 2D power angular spectra integrated over in a broad (> dz) redshift range:

$$W = window function$$

of the redshift bin
 $C_l \propto \int_0^\infty d\chi \frac{W^2(\chi)}{\chi^2} P_{\text{matter}}(k = l/\chi)$ (Limber limit)

- For neutrino masses, going 3D with spectro-z does not improve the sensitivity.
- But useful for dark energy/modified gravity/BAO.

Audren et al. 2012

Galaxy power auto & cross-spectra for 3 redshift bins:

- Appreciable cross-correlation signal between adjacent bins because of photometric redshift uncertainties.
- Otherwise, no intrinsic correlation

Nonlinear corrections

- Only nonlinearities in the matter density fluctuations has been accounted for in this figure.
- Other (not shown) sources include scaledependent galaxy bias.

Linear galaxy bias:

* This is really old data, but illustrates the point anyway...

On large scales, we expect the clustering of galaxies to trace the underlying matter density field up to a constant factor:

$$P_{\text{galaxy}}(k) = b^2 P_{\text{matter}}(k)$$

Depends on the tracer; not predictable from first principles Scale-dependent galaxy bias:

Our galaxy clustering forecast...

Modelling galaxy bias is the main problem here.

Scale-dependent bias:

Our galaxy clustering forecast...

Modelling galaxy bias is the main problem here.

Linear bias: two limiting cases

- Optimistic: Linear bias is exactly known.
- **Pessimistic**: No information at all.
 - N redshift bins \rightarrow N linear bias parameters to marginalise.

The reality is somewhere in between.

Our galaxy clustering forecast...

Modelling galaxy bias is the main problem here.

Linear bias: two limiting cases

- Optimistic: Linear bias is exactly known.
- Pessimistic: No information at all.
 - N redshift bins \rightarrow N linear bias parameters to marginalise.

Tomography: 8 redshift bins (not much improvement with more bins).

1σ sensitivity to the neutrino mass sum / from galaxy clustering (optimistic linear bias)

Redshift binning...

We choose our redshift bins by demanding the **surface density of galaxies** to be the same in all bins.

Shear-galaxy cross correlation...

We assume the shear and the galaxy samples cover the exact same patch of the sky.

- Significant shear-galaxy cross-correlation signal.
- Turns out to be not very useful for neutrino mass measurement.
- But can improve dark energy constraints somewhat (more later).

Shear vs galaxy clustering...

Besides the galaxy bias, there is one more subtle difference between the two probes:

- Cosmic shear = bending of light rays \rightarrow sensitive to the metric perturbations Φ .
- Galaxy clustering (if bias is known) probes the matter density perturbations δ_m .

In **ACDM-type cosmologies** (in the subhorizon limit):

• The extra ω_m factor makes the parameter degeneracy directions of cosmic shear and galaxy clustering very different!

Shear vs galaxy clustering: degeneracy directions...

 $\omega_{\rm m}$ vs *h* degeneracy in a restricted 2-parameter analysis.

Black = galaxy only (optimistic bias) Red = cosmic shear only Gold = Planck CMB only Grey = galaxy only (pessimistic bias)

• The ω_m -h degeneracy is completely broken when cosmic shear and galaxy clustering are used in combination.

 \rightarrow Will also help to tighten the neutrino mass constraint.

Add neutrino mass: three-way degeneracy...

Including neutrino mass in the analysis creates a **three-way degeneracy** between $(\omega_m, h, \Sigma m_y)$.

- Different orientations of ellipsoids for cosmic shear and galaxy clustering.
- When combined, the three-way degeneracy can be broken very effectively.

This is our central message!

Some numbers...

Some numbers...

Good enough to measure the mass spectrum?

Unfortunately not.

In fact we can model the mass spectrum any way we like and the data cannot tell. ۲

3+0 = 3 (equally) massive + 0 massless

fiducial value within 1σ .

Extended models...

Besides the 7 vanilla parameters, some other cosmological parameters are known to be degenerate with the neutrino mass.

			Extra radiation		Dark energy EoS	
Data	$10^3 \times \sigma(\omega_{\rm dm})$	$100 \times \sigma(h)$	$\sigma(\sum m_{\nu})/\text{eV}$	$\sigma(N_{ m eff}^{ m ml})$	$\sigma(w)$	
CS	1.864	0.638	0.064	0.081	0.0310	
cg	1.121	0.655	0.020	0.086	0.0163	
csg	0.885	0.324	0.012	0.056	0.0083	
csgx	0.874	0.292	0.012	0.055	0.0065	
csg_b	1.400	0.529	0.042	0.068	0.0207	
csg_bx	1.390	0.482	0.042	0.068	0.0186	
csgx (7-parameter)	0.181	0.071	0.011	-	-	
csg_bx (7-parameter)	0.354	0.244	0.022	-	-	

c=CMB (Planck); g=galaxy power spectrum; s=cosmic shear; x=shear-galaxy cross-correlation

- **Optimistic linear bias**: No deterioration of sensitivity to Σm_{s} ; still 5σ +.
- **Pessimistic linear bias**: Factor of 2 deterioration in sensitivity.

- The existence of neutrino dark matter is a fundamental prediction of SM+FLRW cosmology+neutrino oscillation experiments.
- Existing precision cosmological data already place strong constraints on the abundance of neutrino dark matter and hence the neutrino mass.
- Future observations with Planck+Euclid will do much better, especially when cosmic shear and galaxy clustering data are analysed in combination.
 - A 2-5σ detection is possible even if the neutrino mass is the smallest allowed by oscillation experiments.
- **The challenge** (for theorists): get the nonlinear corrections right!