Shedding light on Dark Matter from accelerator physics

Bryan Zaldívar Montero

17/11/'11. UL-Bruxelles.

based on Y. Mambrini, B.Z., hep-ph/1106.4819 JCAP 1110 (2011) 023

Bryan Zaldívar Montero

OVERVIEW

• Introduction

- Experimental evidences
- DM interpretations
- Nature of couplings
- Motivation
- Discussion & Results
 - LEP vs Tevatron
 - fermionic DM
 - scalar DM
 - combined analysis (astro+accel)
 - universal lepton coupling
 - pure electron coupling
 - words on LHC
- Conclusions

DARK MATTER IN A NUTSHELL

Distance

Bryan Zaldívar Montero

Shedding light on DM from accelerator physics

æ

DARK MATTER IN A NUTSHELL

- WMAP data: $\Omega_X h^2 = 0.1123 \pm 0.0175$ 4.7% baryonic matter, **22% dark matter**, 73% dark energy
- Boltzmann equation

•
$$\Omega_X h^2 \propto rac{1}{\langle \sigma v
angle} \sim rac{m_X^2}{g_X^4}$$

• WIMP miracle $m_X \sim 100 \text{ GeV} \Rightarrow g \sim g_{\text{Weak}}$

•
$$\langle \sigma v \rangle \approx 3 \times 10^{-26} \text{ cm}^3/\text{s}.$$

• A priori requisites: weakly interacting, long-lived, neutral.

DARK EXCESSES? (ACC. EXP., D.D.)

Bryan Zaldívar Montero

DARK EXCESSES? (ACC. EXP., D.D)

Bryan Zaldívar Montero Shedding light on DM from accelerator physics

DARK EXCESSES? (ASTRO. EXP., D.D.)

Bryan Zaldívar Montero

DARK EXCESSES? (ASTRO. EXP., D.D.)

Tension in XENON and DAMA results

- electrophilic DM Bernabei et al, astro-ph/0712.0562 DAMA sensible also to electron recoil
- leptophilicFox et al, hep-ph/0811.0399hadrophilicKopp et al, hep-ph/0907.3159

Bryan Zaldívar Montero

DARK EXCESSES? (ASTRO. EXP. I.D.)

Bryan Zaldívar Montero

DARK EXCESSES? (ASTRO. EXP. I.D.)

- e^+ -flux, by PAMELA
- electrophilic, μ -philic, π -philic, ...

Bryan Zaldívar Montero

С

Bryan Zaldívar Montero

MOTIVATION ($\underline{\text{LEP}}$ vs. $\underline{\text{Tevatron}}$)

Bryan Zaldívar Montero

MOTIVATION ($\underline{\text{LEP}}$ vs. $\underline{\text{Tevatron}}$)

Bryan Zaldívar Montero

С

MOTIVATION (LEP VS. <u>TEVATRON</u>)

Bryan Zaldívar Montero

MOTIVATION (LEP VS. <u>TEVATRON</u>)

Bryan Zaldívar Montero

Bryan Zaldívar Montero

Bryan Zaldívar Montero

Bryan Zaldívar Montero

MOTIVATION (<u>LEP</u> vs. <u>TEVATRON</u>)

Bryan Zaldívar Montero

THE MODELS

• Effective scales: $\frac{1}{\Lambda_{i}} \equiv \frac{\sqrt{g_{l}}}{\Lambda}; \qquad \frac{1}{\Lambda_{i}} \equiv \frac{\sqrt{g_{h}}}{\Lambda}$ • Operators: $\mathcal{L}_V = \sum_i \frac{g_i^i}{\Lambda^2} (\bar{l}^i \gamma^\mu l^i) (\bar{\chi} \gamma_\mu \chi) + \sum_i \frac{g_h^i}{\Lambda^2} (\bar{q}^i \gamma^\mu q^i) (\bar{\chi} \gamma_\mu \chi)$ $\mathcal{L}_S = \sum_i \frac{g_i^1}{\Lambda^2} (\bar{l}^i l^i) (\bar{\chi}\chi) + \sum_i \frac{g_h^i}{\Lambda^2} (\bar{q}^i q^i) (\bar{\chi}\chi)$ $\mathcal{L}_A = \sum_i \frac{g_i^1}{\Lambda^2} (\bar{l}^i \gamma^\mu \gamma^5 l^i) (\bar{\chi} \gamma_\mu \gamma^5 \chi) + \sum_i \frac{g_h^2}{\Lambda^2} (\bar{q}^i \gamma^\mu \gamma^5 q^i) (\bar{\chi} \gamma_\mu \gamma^5 \chi)$ $\mathcal{L}_t = \sum_i \frac{g_l^i}{\Lambda^2} (\bar{l}^i \chi) (\bar{\chi} l^i) + \sum_i \frac{g_h^i}{\Lambda^2} (\bar{q}^i \chi) (\bar{\chi} q^i)$ • Models in lepton sector: A) Electrophilic couplings: $g_l^e = g_e, g_l^{i=\mu,\tau,\nu_i} = 0$ B) Charged lepton couplings: $g_l^{i=e,\mu,\tau} = g_l, g_l^{i=\nu_i} = 0$ C) Universal lepton couplings: $g_l^{i=e,\mu,\tau,\nu_i} = q_l$ • Universality in hadronic couplings: $g_h^{i=u,d,c,s,b,t} = g_h$.

Bryan Zaldívar Montero

ANNIHILATION CROSS-SECTIONS

$$\begin{aligned} \frac{d\sigma_{\rm I}}{d\Omega} &= \frac{|\mathcal{M}_{\rm I}|^2}{64\pi^2 s} \frac{\sqrt{s - 2m_3^2 - 2m_4^2 + \frac{(m_3^2 - m_4^2)^2}{s}}}{\sqrt{s - 4m_\chi^2}}; \qquad s \simeq 4m_\chi^4 + m_\chi^2 v^2 \\ \sigma_I^J v &= g_l^2 \sum_{l=e,\mu,\tau,\nu} \sigma_{I,l}^J v + c \, g_h^2 \sum_{h=u,d,c,s,t,b} \sigma_{I,h}^J v \qquad J: \text{ operator type } \\ I: \text{ coupling type } \end{aligned}$$

$$\sigma_{V,k}v = 4g_{\Lambda} \left(24(2m_{\chi}^2 + m_k^2) + \frac{8m_{\chi}^4 - 4m_{\chi}^2m_k^2 + 5m_k^4}{m_{\chi}^2 - m_l^2}v^2 \right)$$

$$\sigma_{S,k}v = 24g_{\Lambda}(m_{\chi}^2 - m_k^2)v^2 \qquad \qquad g_{\Lambda} = \frac{\sqrt{1 - m_k^2/m_{\chi}^2}}{192\pi\Lambda^4}$$
$$\sigma_{A,k}v = 4g_{\Lambda}\left(24m_k^2 + \frac{8m_{\chi}^4 - 22m_{\chi}^2m_k^2 + 17m_k^4}{m_{\chi}^2 - m_k^2}v^2\right)$$

Bryan Zaldívar Montero

IDEA AND EXAMPLE

Requiring

$$\sigma_l^{max}v + \sigma_h^{max}v \gtrsim 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1} \simeq 2.5 \times 10^{-9} \mathrm{~GeV}^{-2}$$

assume e.g. $m_{\chi} \sim 5$ GeV, in a model with only electronic coupling and vector-like interaction:

• $(\Lambda_e)_{\min} \simeq 480 \text{ GeV from LEP}$

•
$$m_{\chi} >> m_h, m_l$$

• $\sigma_V v \simeq \frac{m_{\chi}^2}{\pi \Lambda_e^4} + 3 \frac{m_{\chi}^2}{\pi \Lambda_h^4} = \frac{m_{\chi}^2}{\pi \Lambda_e^4} (1 + 3 \frac{g_h^2}{g_l^2}) \gtrsim 2.5 \times 10^{-9}$
 $\Rightarrow \frac{g_h}{g_l} \simeq 16$ 94% ann. rate to hadrons

Bryan Zaldívar Montero

 $(\Box) (\bigcirc) (\odot)$

NUMERICAL RESULTS

COMBINED ANALYSIS

Bryan Zaldívar Montero

COMBINED ANALYSIS

Bryan Zaldívar Montero

NUMERICAL RESULTS: UNIVERSAL-LEPTONIC, VECTOR

Bryan Zaldívar Montero

NUMERICAL RESULTS: ELECTRONIC, SCALAR

Bryan Zaldívar Montero

Scalar Dark Matter

- $\mathcal{L}_e = \frac{g_e}{\Lambda_S} \chi \chi \bar{e} e$
- Madgraph analysis:
 - same bckgr: $e^+e^- \rightarrow \gamma \nu \bar{\nu}$
 - χ^2 -analysis
 - signal+bckgr sim.
- Infer bounds for $\langle \sigma_{S,e}^s v \rangle$: $\sigma_{S,e}^s v \simeq$ $\frac{g_e^2}{4\pi\Lambda_S^2} \left(1 - \frac{m_e^2}{m_\chi^2}\right)^{3/2} + \frac{g_e^2}{32\pi\Lambda_S^2}v^2 .$ Result:
- $\sigma_{S,e}^s \simeq 10^{-24} \mathrm{cm}^3/\mathrm{s}$
- No constraints from LEP, nor Tevatron
- $\frac{\Lambda_S}{g_e}\Big|_{\langle \sigma v \rangle \sim 10^{-26}} \gtrsim 5 \text{TeV}$

200

Bryan Zaldívar Montero

LHC?

Shedding light on DM from accelerator physics

LHC (FOX ET AL. PH/1109.4398)

Bryan Zaldívar Montero

CONCLUSIONS

- Nature of DM coupling is crucial to fit all present data
- We computed the rate of hadronic/leptonic coupling to respect:
 - LEP + Tevatron (mono-photon, mono-jet events)
 - **2** WMAP + XENON100
- A very light fermionic DM ($\lesssim 10$ GeV) mainly excluded whatever the type of interaction
- Heavier candidates (≥ 10 GeV) should be largely hadrophobic (vector int.) or even excluded (scalar int.)
- Models with electrophilic couplings (motivated by INTEGRAL, or Synchrotron radiation data) are excluded by LEP/Tevatron analysis

Escaping conclusions: DM candidate not coupled to electrons (LEP bound not applicable) or hadronic coupling only to bottom or charm (Tevatron bound not applicable)

• Nothing to say for the moment for scalar DM.

merci beaucoup!

Bryan Zaldívar Montero

 $(\Box) (\bigcirc \bigcirc) (\bigcirc) (\bigcirc \bigcirc) (\odot)$

BACK-UP. LIGHT-MEDIATORS

Bryan Zaldívar Montero

BACK-UP. HIGH-ENERGY COMPLETIONS

Bryan Zaldívar Montero