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Abstract

This master thesis investigates feebly interacting massive particles (FIMPs) produced from freeze-
in through the decay of a heavy particle during non-standard early cosmology. Here we focus
on FIMPs momentum distribution functions and corresponding Lyman-α constraints. While
previous works have primarily studied FIMP production in a radiation-dominated universe, we
develop an analytical framework that extends to more general cosmological scenarios, including
early matter-dominated eras and ”k-dominated” eras, characterized by power-law inflaton
potentials V (ϕ) ∝ ϕk, where ϕ is the inflaton. We derive exact analytical expressions for
the momentum distribution functions of FIMPs in these scenarios, distinguishing between
bosonic and fermionic reheating mechanisms, which exhibit different behaviors for k > 2. Our
analysis reveals that the scaling of the momentum distribution function at low momenta, q,

changes from q−1/2 in radiation domination to qk−3/2 and q
3k−5
2k−2 for bosonic and fermionic

reheating, respectively. We compute the corresponding second moments, finding significant
differences that impact small-scale structure formation. By reinterpreting existing Lyman-α
forest constraints from warm dark matter to FIMPs, we derive bounds on FIMP mass that
show complex dependence on cosmological scenarios. These constraints indicate that, for a fixed
reheating temperature, increasing the value of k weakens the bounds in the bosonic reheating
scenario, while it strengthens them in the fermionic case. Our results demonstrate that the
history of the early universe leaves distinctive imprints on FIMP dark matter observational
signatures.

Keywords: dark matter, feebly interacting massive particles, non-standard cosmology, Lyman-α
forest, early universe, freeze-in, reheating
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Résumé

Ce mémoire étudie les particules massives à interaction faible (FIMPs) produites durant des
scénarios cosmologiques primordiaux non-standards, en se concentrant sur leurs fonctions de
distribution d’impulsion et les contraintes Lyman-α correspondantes. Alors que les travaux
précédents ont principalement étudié la production des FIMPs dans un univers dominé par la
radiation, nous développons un cadre analytique complet qui s’étend à des histoires cosmologiques
plus générales, incluant une ère primordiale dominée par la matière et les ères ”k-dominées”,
caractérisées par des potentiels d’inflaton en loi de puissance V (ϕ) ∝ ϕk, où ϕ designe l’inflaton.
Nous dérivons des expressions analytiques exactes pour les fonctions de distribution d’impulsion
des FIMPs dans ces scénarios, distinguant les mécanismes de réchauffement bosonique et
fermionique qui présentent des comportements différents pour k > 2. Notre analyse montre
que le terme dominant les faibles impulsions varie de q−1/2 durant l’époque dominée par la

radiation à qk−3/2 et q
3k−5
2k−2 pour les réchauffements bosonique et fermionique, respectivement.

Nous calculons les seconds moments correspondants, trouvant des différences significatives qui
impactent la formation des structures à petite échelle. En traduisant les contraintes existantes,
obtenues à partir des données d’observation de la forêt Lyman-α, de la matière noire tiède
aux FIMPs, nous dérivons des limites sur la masse des FIMPs qui montrent une dépendance
complexe en les scénarios cosmologiques. Ces contraintes indiquent que, pour une température
de réchauffement fixée, une augmentation de la valeur de k diminue les bornes inférieures dans
le scénario de réchauffement bosonique, tandis qu’elle les renforce dans le cas fermionique. Nos
résultats démontrent que l’histoire de l’univers primordial laisse des empreintes distinctives sur
les signatures observationnelles de la matière noire FIMP.

Mots-clés : matière noire, particules massives à interaction très faible, cosmologie non-standard,
forêt Lyman-α, univers primordial, gel ”freeze-in”, réchauffement
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Introduction

Significant progress has been made in understanding the universe over the past century. A wide
range of observational evidence across multiple scales, from galaxy rotation curves to the cosmic
microwave background, points toward the existence of dark matter (DM). These observations
indicate that dark matter accounts for approximately 25% of the total energy content of the
universe. However, its nature remains one of the greatest mysteries in modern physics.

In this master thesis, we investigate feebly interacting massive particles (FIMPs), a compelling
dark matter candidate. Due to their extremely weak interactions with standard model particles,
FIMPs never achieve thermal equilibrium with the primordial bath. Here we focus on production
through the freeze-in mechanism, a slow, out-of-equilibrium process.

The objective of this work is to understand how the early history of the universe influences
FIMP production and observational signatures. While the standard cosmological model assumes
that the universe was radiation-dominated at early times, alternative scenarios, in which other
energy components dominate the early universe, can lead to qualitatively different outcomes for
DM production. Here, in particular, we focus on the reheating period following inflation. During
this period, the inflaton field oscillates around the minimum of its potential and decays into
radiation. If FIMPs are produced while the universe is dominated by other components than
radiation, their resulting momentum distributions and relic abundances can differ significantly.

We begin in Chapter 1 by introducing the fundamental concepts required throughout this thesis.
In Chapter 2, we develop the tools necessary to compute the FIMP momentum distribution
function. Starting from the Boltzmann equations, we derive analytical expressions for the
distribution in various early-universe scenarios: the standard radiation-dominated era, an early
matter-dominated era with a quadratic inflaton potential, and a more general ”k-dominated”
era characterized by a monomial inflaton potential parameterized by k. Within each scenario,
we distinguish between bosonic and fermionic reheating mechanisms, which exhibit qualitatively
different behavior when k > 2.

After establishing the momentum distributions, we compute the corresponding comoving number
densities in Chapter 3, investigating how non-standard cosmologies impact the final FIMP
abundance. In particular, we examine the role of the dilution factor, which arises in these
scenarios. We also use the comoving number density to define the moment of the freeze-in.

Finally, in Chapter 4, we derive constraints on FIMP properties from observations of the
Lyman-α forest, which probe the small-scale structure in the universe. Since non-cold dark
matter candidates like FIMPs can suppress structure formation below a characteristic scale,
Lyman-α observations offer powerful constraints. We reinterpret existing bounds on warm
dark matter into constraints for FIMPs produced during various early cosmological epochs,
highlighting how the production history shapes the viable parameter space.
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2

My contributions

This master thesis makes several contributions to the study of FIMP dark matter in non-standard
cosmologies. While the FIMP momentum distribution in a radiation-dominated universe is
well known, we provide new analytical solutions for their distribution during an early matter-
dominated era, including exact expressions for the second moment in Sec 2.3. We extend this
analysis to general k-dominated scenarios, deriving analytical momentum distributions for both
bosonic and fermionic reheating mechanisms in Secs 2.4.2 and 2.4.3 respectively. Building on
these results, in Secs 4.3 and 4.4, we establish Lyman-α constraints for FIMPs produced in these
eras, revealing how reheating dynamics can substantially influence dark matter phenomenology.



Chapter 1

Dark matter and cosmology

1.1 Dark Matter

The dark matter problem can be understood as a tension, a discrepancy between theoretical
predictions and observational data. Such tensions are often the driving force behind scientific
progress. What makes this problem particularly compelling is that multiple independent
observations, at various scales, point towards the same underlying issue. In this chapter, we will
examine some of these observations, identify the nature of the tension, and explore how the
assumption of dark matter can resolve it. We will also introduce a candidate for particle dark
matter, a feebly interacting massive particle (FIMP), and discuss the various constraints on
FIMP. We will focus in particular on astrophysical constraints, such as those from the Lyman-α
forest, as well as constraints from collider experiments.

1.1.1 Observations

The dark matter problem arises from a series of observations, across different scales, that are
incompatible with the predictions of our current theories. In this section, we will review some
of these observations.

At the galactic scale, we can study the rotational velocity of objects within a galaxy, known
as the rotation curve. According to Newton’s second law, the rotational velocity (vrot) as a
function of the distance from the center is related to the gravitational forces. For a test mass m,
such as a star, located at a distance r from the center, Newton’s second law gives

m
v2rot
r

= G
mM(r)

r2
, (1.1)

with M(r) the mass contained within a sphere of radius r and G Newton’s constant. This leads
to the radial dependence for the rotational velocity

vrot =

√
G
M(r)

r
. (1.2)

In a galaxy where most of the mass is concentrated toward the center, as would be expected from
the distribution of visible matter, M(r) tends to a constant at large r, implying vrot ∝ r−1/2.
This predicts that the rotation curve should decrease with distance from the center.

3



4 Chapter 1. Dark matter and cosmology

Figure 1.1: The rotation curve of the Andromeda galaxy (M31) from the 1970 paper of Vera
Rubin and Kent Ford [3]. The observed flat rotation curve at large radii contradicts the expected
decline, providing evidence for dark matter.

However, this contradicts the observations. They began in the late 1930s, with the PhD thesis
of Horace Babcock in 1939, in which he observed the rotational velocity of the Andromeda
galaxy (M31) and found that it remained high even at large distances from the center [1]. After
World War II, radio astronomy experienced a significant boost due to the use of military radar
equipment for astronomical observations. In 1951, Harold Ewen and Edward Purcell detected
the 21 cm line, a signal emitted by neutral hydrogen (HI) atoms, which allows us to map HI
clouds throughout the universe [2]. In 1970, Vera Rubin and Kent Ford used the redshift, a
change in frequency due to the motion of the HI clouds, of the 21 cm line to measure the
rotational velocity of M31 out to 22 kpc from the galactic center [3]. They found that, at large
radii, the rotation curve remained flat, see Fig 1.1. Their measurements were more precise
than previous ones and extended farther in radius. These results contradict the prediction
of Newton’s second law. After the results of Rubin and Ford, several papers were published
investigating the rotation curves of other galaxies. Notably, in 1978, Albert Bosma published
the rotation curves of 25 galaxies [4]. His work helped convince physicists that most galaxies
exhibit flat rotation curves at large radii [5]. In the same year as Rubin and Ford’s publication,
Ken Freeman proposed the idea that missing mass in the outer regions of galaxies could explain
the flat rotation curves. This missing mass can be interpreted as a halo of dark matter with a
density profile ρ(r) ∝ r−2. With this assumption, M(r) ∝ r which cancels the radial dependence
of vrot resulting in a flat rotation curve at large radii [6].

At larger scales, we consider clusters of galaxies. In 1933, Fritz Zwicky studied the redshift
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of galaxies in the Coma cluster and used it to determine the velocity dispersion (σo), which
quantifies the spread in velocities of galaxies within the cluster [5, 6]

σo = 1020km/s. (1.3)

He applied the virial theorem, assuming the Coma cluster to be stationary, to calculate the
theoretical velocity dispersion (σc), and compare it with the observed value. The virial theorem
relates the average kinetic energy (Ek) to the potential energy (Ep)

⟨Ek⟩ = −1

2
⟨Ep⟩ . (1.4)

The average kinetic energy is given by ⟨Ek⟩ = 1
2
Mσ2, with M the mass of the cluster. The

average potential energy comes from gravitation, ⟨Ep⟩ = −GM2

r
. From this, the velocity

dispersion is

σc =

√
2G

M

r
. (1.5)

Assuming the Coma cluster contains approximately 800 galaxies, each with a mass around 109

solar masses, Zwicky computed a theoretical velocity dispersion of σc = 80 km/s. To account
for the large discrepancy between the observed and calculated values, Zwicky argued that the
Coma cluster must be about 400 times more massive than what is inferred from visible matter.
He proposed that this missing mass comes from dark matter, and famously stated that ”dark
matter exists in a greater density than luminous matter” [7, 8]. It is also noteworthy that in
1937, Zwicky published another paper on the Coma cluster, this time using the virial theorem
and the observed velocity dispersion to estimate the cluster’s total mass. He then compared
this mass to the average total luminosity and found a very high mass-to-light ratio of about
500. This again led him to conclude that a significant amount of dark matter must be present
in galaxy clusters. Interestingly, in that same paper, Zwicky also suggested that gravitational
lensing could be used to measure the mass of galaxy clusters, a remarkably forward-looking
idea [9].
Nearly seventy years later, this concept became a key tool in one of the most direct pieces of
evidence for dark matter: the observation of the Bullet Cluster. This observation was made
in 2006 by Douglas Clowe et al. [10]. They studied a system of two galaxy clusters that had
collided. By analyzing the X-ray and visible light emissions, they mapped the distribution of
most of the baryonic matter. They also used weak gravitational lensing, which refers to the
distortion of the background due to the bending of light as it passes through the Bullet Cluster,
to determine the overall distribution of mass in the system. What they found was that the bulk
of the mass was located outward from the baryonic matter, in regions that do not align with the
hot gas observed in X-rays. This discrepancy can be explained by the presence of dark matter in
both clusters. Initially, each cluster consisted of both baryonic matter and dark matter merged
together. During the collision, the baryonic matter interacted and slowed down, creating the
observed X-ray and visible light signals concentrated between the clusters. In contrast, dark
matter, which has suppressed interactions with standard model particles and itself, passed
through the collision largely unaffected. This led to a spatial separation between the dark
matter and the baryonic matter [6,11]. In Fig. 1.2, we show the distribution of baryonic matter
(from X-ray and visible light observations) and the total mass distribution (from weak lensing).
The separation between the two clearly illustrates the presence of dark matter.
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Figure 1.2: Image of the Bullet Cluster from Clowe et al. [10]. The distribution of baryonic
matter from X-rays (blue) and visible light (red) is spatially separated from the total mass
distribution determined from weak gravitational lensing (green contours), providing direct
evidence for the existence of dark matter.

Figure 1.3: The CMB temperature power spectrum from Planck 2015 [12]. The observed
positions and relative heights of the acoustic peaks, particularly the third peak compared to the
second, strongly constrain the dark matter density.
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The largest scale at which we have observational access is the observable universe. In the 1940s,
George Gamow, Ralph Alpher, and Robert Herman, working within the framework of Big Bang
theory, predicted that the cooling of the universe following the Big Bang would leave behind a
relic radiation [13]. In 1964, Arno Penzias and Robert Wilson, working at Bell Labs in New
Jersey, accidentally discovered an isotropic microwave signal with a temperature of approximately
3.5 Kelvin. At the same time, Robert Dicke and Jim Peebles at Princeton University were
designing an experiment to detect this relic radiation. Upon learning of Penzias and Wilson’s
discovery, they correctly interpreted the signal as the cosmic microwave background (CMB).
This led to two important papers published in 1965: one by Penzias and Wilson reporting
the detection [14], and another by Dicke, Peebles, Roll, and Wilkinson interpreting it as the
CMB [15].

The CMB remains one of the most precise probes of the early universe and provides strong
evidence for the existence of dark matter. Its spectrum is remarkably homogeneous and follows
a nearly perfect blackbody distribution at a temperature of 2.725 K. However, small anisotropies
exist at the level of O(10−5), corresponding to small temperature fluctuations. These anisotropies
are crucial for measuring key cosmological parameters, including the dark matter density. The
CMB was released shortly after the epoch of recombination, when free electrons and protons
combined to form neutral hydrogen atoms. At this point, photons decoupled from matter and
began to travel freely through the universe, rendering it transparent and leaving behind the
CMB as a relic. Prior to recombination, electrons, baryons, and photons were tightly coupled
and behaved as a single fluid. Due to primordial quantum fluctuations, this fluid exhibited
small perturbations in density and temperature. Two competing physical effects acted on
these perturbations: gravitational attraction, which tends to enhance matter clustering, and
photon pressure, which resists collapse. These opposing forces gave rise to acoustic oscillations,
waves that propagated through the plasma at the speed of sound. These oscillations were
frozen in place at recombination when the photons decoupled. Observing the imprints of
these frozen waves in the CMB therefore provides a window into the physical conditions of the
pre-recombination universe. To extract this information, we analyze the CMB power spectrum,
which is obtained by computing the variance of the Fourier transform of the CMB temperature
field. The result, shown in Fig. 1.3, displays a series of peaks, each corresponding to a mode
of oscillation. The odd-numbered peaks correspond to compressions in the plasma, caused by
gravitational attraction, while the even-numbered peaks represent expansion, due to photons
pressure. The position and amplitude of these peaks depend on the total energy content of
the universe. Dark matter plays a crucial role in shaping the CMB power spectrum. Since it
interacts only gravitationally, it does not couple to the photon-baryon fluid, but it contributes to
the gravitational potential wells that enhance the compression phases. As a result, dark matter
tends to amplify the odd-numbered peaks. Another key feature is the Silk damping effect,
which causes the amplitude of the peaks to decrease at small scales due to photon diffusion
out of overdense regions. In the absence of dark matter, the second acoustic peak would be
significantly higher than the third peak because of Silk damping. However, observations show
that the second and third peaks have comparable amplitudes. This implies that the third peak
has been enhanced, evidence of the gravitational influence of dark matter. If one could remove
the Silk damping effect, the third peak would actually exceed the second. Thus, the relative
heights of the second and third peaks serve as a strong signature of dark matter [16].
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Figure 1.4: Log-log plot of the evolution of the comoving number density for FIMPs, Yχ, as a
function of the time variable x = mB/T , with mB = 1 TeV. The three colored curves represent
Yχ for different interaction strengths, while the black curve corresponds to the comoving number
density of the mother particle B, YB. The dashed vertical line marks x = 3, the time at which
the freeze-in process occurs, where the production of FIMPs is suppressed.

1.1.2 FIMP and freeze-in

All of these observations point toward the existence of dark matter. However, the true nature of
dark matter remains unknown. Different approaches have been considered to account for the
dark matter phenomenon. One such alternative does not invoke additional mass but instead
modifies the laws of gravity. This framework, known as modified Newtonian dynamics (MOND),
was introduced by Milgrom in 1982 [17]. MOND proposes a modified version of Newton’s
dynamics. However, this approach faces challenges to explain certain observations such as the
Bullet Cluster or the CMB [17].
Another possibility is that dark matter consists of massive astrophysical compact halo objects
(MACHO), such as primordial black holes, black holes that have been formed before the big
bang nucleosynthesis (BBN) [5]. Alternatively, dark matter may be composed of a new particle
beyond the Standard Model (BSM). In this thesis, we focus on the latter scenario.

Many particle dark matter candidates exist, but in this work, we focus on feebly interacting
massive particles (FIMPs), a candidate that was formalized by J.Hall et al. in 2009 [18].
FIMPs interact so weakly with the standard model (SM) bath, with coupling κ in the range of
10−12−10−8, that they never reach thermal equilibrium with it [18–20]. One possible production
mechanism for FIMPs is known as freeze-in (FI), a slow, out-of-equilibrium process that is
infrared (IR) dominated. In this scenario, FIMPs are produced through the decay or scattering
of a heavier particle, the mother particle B, which is assumed to be in thermal and chemical
equilibrium with the SM bath

B → ASM + χ, B + A′
SM → ASM + χ,
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where χ represents the FIMP, and ASM and A′
SM are SM particles, with mB ≫ mA, mχ. In this

master thesis, we will focus on the decay of B. In this case, the trilinear interaction has the form

Lint ⊃ κBχASM, (1.6)

with κ the coupling constant. To ensure the stability of dark matter and consistency with
current observations, we impose a Z2 symmetry under which the FIMP is odd and all standard
model fields are even. We assume that in the early universe, the initial abundance of FIMPs
is negligible [18, 21]. As long as the mother particle remains in chemical equilibrium, the
interactions above continue to produce FIMPs. During this phase, the comoving number density
of FIMPs, defined as Y = n/s, where s is the entropy density and n the number density,
increases over time. Once the temperature drops to below the mass of B, the mother particle
exits chemical equilibrium and the number density becomes Boltzmann-suppressed. When
H(TFI) ≃ ΓB, where H is the Hubble parameter and ΓB is the decay rate of the mother particle,
the expansion rate of the universe becomes higher than the interaction rate, and the comoving
number density of FIMPs stops increasing, reaching a constant value, it freezes. To study the
evolution of the comoving number density precisely, we must solve the associated unintegrated
Boltzmann equation, which is detailed in Sec. 3.2. For now, we note that the comoving number
density of FIMPs scales with the interaction strength as [18]

YFI ∝ κ2. (1.7)

In Fig. 1.4 we plot the comoving number density of FIMP as a function of a new time variable,
x = mB/T . The three colored curves correspond to different decay widths, showing that an
increase in ΓB leads to a higher comoving number density. A plateau is reached, indicating
that the comoving number density becomes constant. This plateau is reached when freeze-in
occurs, at xFI ≃ 3, where xFI is defined as the time at which the first maximum of the comoving
number density is reached, and is indicated by the vertical dashed line. The evolution of the
comoving number density of the mother particle is represented by the black curve.
We can estimate how the comoving number density depends on the properties of the FIMP
and the mother particle using a simple rule-of-thumb argument. We assume that the comoving
number density of FIMPs at a given temperature is approximately

Yχ ≃ RB(T )t(T ), (1.8)

where RB(T ) is the production rate and t(T ) the age of the universe at the temperature T .
Approximating RB(T ) ≃ ΓBmB/T and t(T ) ≃ 1/H(T ) ≃Mpl/T

2, we obtain

Yχ(T ) ≃
ΓBmBMpl

T 3
. (1.9)

This approximate solution illustrates that the freeze-in process is IR dominated, since the
production of FIMPs becomes more efficient at lower temperatures [18, 20, 22]. From this
estimate, we can infer the scaling of the FIMP relic density

Ωχh
2 ∝ mχΓB

m2
B

. (1.10)

This dependence on the mass of B and its decay width allows these properties to be tested both
in the laboratory (e.g., via collider experiments) and astrophysically (e.g., through Lyman-α
constraints) [18].
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1.1.3 Constraints

As we have seen in Sec. 1.1.1, dark matter, and in particular FIMPs, affects the formation of
structures in the universe on both large (≥ 10 Mpc) and small scales (≤ 1 Mpc). By studying
the structures we observe today, we can infer constraints on the properties of FIMPs.
To obtain such constraints, we need to compare the small-scale structures observed with those
predicted theoretically. A powerful probe of small-scale structure is neutral hydrogen, which
serves as an excellent tracer due to the abundance of hydrogen in the universe. Importantly,
the hydrogen must be neutral so that it can absorb light through electronic transitions. The
Lyman-α transition corresponds to an electron in a hydrogen atom transitioning from the ground
state to the first excited state, with a characteristic wavelength of 121.567 nm in the ultraviolet
(UV) range. To observe this absorption feature, we need a source that emits high-energy UV
photons, this is provided by active galactic nuclei (AGN). AGN are supermassive black holes
with accretion disks composed of hot gas, accompanied by jets aligned with their rotation
axes. Depending on the orientation of these jets with respect to our line of sight, we classify
AGN as blazars, jets aligned with our line of sight, or quasars, jets at a small angle. As UV
photons from AGN travel through the universe toward us, they can encounter clouds of neutral
hydrogen. Each time this happens, some photons are scattered out of our line of sight, producing
an absorption line in the observed spectrum. However, due to the expansion of the universe,
the wavelength of these photons is redshifted. This means that the farther the HI cloud is
from the source, the more redshifted the corresponding absorption line will appear. A series
of such absorption lines forms what is known as the Lyman-α forest in the spectra of AGN.
The spectrum of a quasar at a redshift z = 3.155 from [23] is shown in Fig. 1.5a. By analyzing
the Lyman-α forest, we can map the spatial distribution of HI clouds and infer the small-scale
structure of the universe. To quantify this, we consider the transmitted flux fraction in velocity
space,

δα(v) =
Fobs(v)− F̄ (v)

F̄ (v)
, (1.11)

where Fobs(v) is the observed flux and F̄ (v) the average flux. From this, we define the Lyman-α
flux power spectrum, corresponding to the variance of the transmitted flux, as

Pα(k) = V
〈
|δ̃α(kv)|2

〉
, (1.12)

where δ̃α(kv) is the Fourier transform of δα(v) and kv the Fourier dual of the velocity [21,22]. In
Fig. 1.5b, the Lyman-α power spectrum from [23] is shown at various redshifts. Lyman-α allows
us to probe the small-scale structures only at redshift z ∼ 2− 6. At higher redshifts, z ≳ 6, the
universe had not yet undergone reionization, so the observed flux of the Lyman-α forest would
be effectively zero [24]. At lower redshifts, z ≲ 2 the analysis becomes more difficult because
the power spectrum becomes highly nonlinear and baryonic physics plays a significant role [25].
To obtain constraints on dark matter, we compare the measured Lyman-α flux power spectrum
with the theoretical prediction. Computing this prediction requires numerical simulations, and
since the scales probed by Lyman-α lie in the nonlinear regime, expensive hydrodynamical
simulations are needed [22,26]. Such simulations have been performed for warm dark matter
(WDM), resulting in a constraint on its mass [27]

mLyα
WDM ≥ 5.3 keV. (1.13)
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(a) (b)

Figure 1.5: (a) Quasar spectrum at redshift z = 3.155 (SDSS J114308.87+345222.2) observed
by BOSS. ”RF” denotes the rest frame. (b) Measured Lyman-α flux power spectrum at various
redshifts. Both figures come from [23].

WDM belongs to a broader class known as non-cold dark matter (NCDM), characterized by
non-negligible velocity dispersion at the time of structure formation. This allows NCDM particles
to free-stream from overdense to underdense regions, thereby suppressing the formation of
small-scale structures. Our focus, however, is on FIMPs, which also fall under the category
of non-cold dark matter. Therefore, we need to interpret this Lyman-α constraint on WDM
in the case of FIMPs. Several approaches exist, but the method we are interested in relies on
comparing the typical velocity dispersion of FIMPs today to that of WDM [19]. The idea is to
require

σFIMP
0 ≤ σWDM

0 |Ly-α, (1.14)

where σX =
√
⟨p2⟩/mX is the root-mean-square (rms) velocity of X, with ⟨p2⟩ the second

moment of the X obtained from the momentum distribution function〈
p2
〉
=

∫
d3p p2f(p)∫
d3p f(p)

. (1.15)

This method we will develop in Chapter 4.

We can also attempt to constrain FIMPs through collider experiments. Although FIMPs interact
only very weakly with the standard model, too weakly to produce detectable signals in direct
dark matter searches, their relic abundance depends on the properties of a heavier mother
particle B, such as its decay rate ΓB and mass mB, as shown in the previous section. Unlike
FIMPs, the particle B can have stronger interactions with the standard model, making it
potentially observable at colliders. Even though the abundance of B particles has decayed
in the early universe, they can be pair-produced at collider experiments. At facilities like
the large hadron collider (LHC), searches for such particles often result in displaced signals
accompanied by missing energy in the final state. These signals are model-dependent. In the
scenario considered here, we focus on a three-body interaction of the form

B −→ ASM + χ. (1.16)

Several scenarios of this model exist, depending on the nature of the particles involved [20]. In
this work, we focus on a scenario where the mother particle B is a scalar, and the FIMP χ is a
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Figure 1.6: A transverse slice representation of the CMS detector taken from [28].

Majorana fermion. The relevant interaction term in the Lagrangian is given by

Lint ⊃ κψ̄AχϕB (1.17)

This model implies that the decay of B can have a macroscopic lifetime, since τB ∝ κ−2. This
makes B a long-lived particle (LLP), capable of travelling partially or entirely through the
detector before decaying [11].
We now briefly describe the CMS and ATLAS detectors at the LHC. Both detectors are
cylindrical in shape and consist of several layers. A schematic of the CMS detector is shown
in Fig. 1.6. The innermost part is the tracker, where charged particles leave a charged track.
A magnetic field causes their trajectories to bend, depending on their charge and momentum.
Surrounding the tracker are the electromagnetic and hadronic calorimeters, which stop most
particles and measure their energy. However, muons and neutrinos can pass through these layers.
The outermost layer consists of muon chambers to detect the muons that penetrate the inner
detectors. The architecture is designed to detect all possible observable particles. Therefore, a
significant amount of missing energy could be interpreted as evidence for particles beyond the
standard model, such as dark matter [11].
When searching for LLPs in CMS and ATLAS, several types of signals are investigated. One
such signal comes from heavy stable charged particles (HSCPs), which appear when B is a
charged particle with a decay width that satisfies Γ−1

B > 10 m. In this case, B decays outside
the detector but still leaves a visible track.
If the particle B is charged and has a decay length between 10 and 100 cm, it may produce
signals in the tracker that vanish before exiting it. These are known as disappearing tracks
(DT). If one of the decay products can be reconstructed, the result is a kinked track (KT),
where the trajectory of the mother particle and its decay product form a single track with a
distinctive kink at the decay point [11, 29].
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Finally, if B decays into a lepton inside the tracker, the signal manifests as a lepton produced
away from the primary interaction vertex. These are known as displaced leptons (DL) [11,29].
Such type of signatures allow us to place constraints on the properties of the mother particle,
such as its mass and lifetime, based on the observed relic density of FIMPs [11, 20]. In Chapter
4, we will see a projection of these constraints for a specific scenario, the leptophilic scenario,
where ψA = lR, with lR a right-handed lepton, and ϕB is a scalar beyond the standard model
carrying an electric charge.

1.2 Cosmology

As we saw in Sec. 1.1.1, DM influences the CMB observations, suggesting that it must have
been produced in the early universe. This establishes a connection between dark matter and
cosmology. The framework of cosmology will therefore be essential to derive key properties
of dark matter. For this reason, this section is dedicated to introduce some of the relevant
concepts.

1.2.1 Foundations of an expanding universe

In 1915, Albert Einstein published his theory of general relativity. This is a theory of gravitation
that reveals a profound connection between the geometry of the universe, described by the
metric (gµν), and its contents, encoded in the energy-momentum tensor (Tµν). This relationship
is captured in Einstein’s field equations

Rµν −
1

2
Rgµν = 8πGTµν , (1.18)

with Rµν the Ricci tensor and R the Ricci scalar, both derived from the metric. Just two years
later, in 1917, Einstein applied his theory to describe the entire universe. The equations predicted
a dynamic universe, one that could either expand or contract. Einstein did not accept this
possibility and modified his equations by introducing the cosmological constant Λ, preserving a
static universe [30]. In 1922, Alexander Friedmann derived solutions to Einstein’s equations that
described a universe in expansion [31,32]. Subsequently, in 1927, Georges Lemâıtre proposed
the idea that the redshift of galaxies observed in the light from distant stars could be the result
of an expanding universe [33,34]. Lemâıtre’s hypothesis suggested that galaxies are receding
from one another, a conclusion that was supported by Edwin Hubble’s observations in 1929 [35].
Hubble showed, through a study of the redshift of galaxies, that there is a direct correlation
between a galaxy’s distance and its redshift

v = H0d, (1.19)

with v the velocity, d the distance, and H0 the Hubble constant today, which describes the rate
of expansion of the universe at the present time. Hubble’s observations confirmed the expanding
nature of the universe, providing compelling evidence that the universe has a history. The field
of cosmology is the study of this history.

To describe the dynamic of the universe, we need to define the correct metric to describe it
and solve Einstein’s field equations accordingly. It has been done by making some assumptions
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about the large-scale structure of our universe. The first is isotropy, meaning the universe
looks the same in all directions. The second is homogeneity, meaning the universe is the same
at every point in space. While these assumptions were initially adopted for mathematical
simplicity, they are now supported by observations, most notably, the uniformity of the CMB
(anisotropies only appear at the level of O(10−5)) [36]. Together, these assumptions form the
cosmological principle. A key quantity to describe an expanding universe is the scale factor,
denoted a(t). It characterizes how physical distances between comoving observers evolve with
time. By convention, the scale factor is set to 1 today and decreases as we look back in time [37].
Another important concept, already mentioned in Sec. 1.1.1, related to the expansion, is the
redshift, denoted by z. It quantifies how much the wavelength of light from distant objects has
been stretched by the expansion of the universe. It is directly related to the scale factor through
the relation

1 + z =
1

a(t)
, (1.20)

where a(t) is the scale factor at the time at which the light was emitted. A redshift of z = 0
corresponds to the present time, and larger values of z correspond to earlier times in the
universe [37].

In 1935, Howard P. Robertson and Arthur G. Walker formalized the metric compatible with
the cosmological principle. The result metric, called the Friedman-Lemaitre-Robertson-Walker
(FLRW) metric, is

ds2 = dt2 − a2(t)

[
dr2

1− βr2
+ r2dΩ2

]
, (1.21)

with dΩ = dθ2 + sin2 dϕ2 the solid angle, and β denotes the spatial curvature, which can be
positive, negative, or flat. We have used the signature of the metric to be (+−−−) and set
c = 1 = ℏ [36]. We can describe the rate at which the universe expands through the time
evolution of the scale factor. It is encapsulated in the Hubble rate, defined as

H(t) =
1

a

da

dt
. (1.22)

Applying the FLRW metric to Einstein’s field equations leads to a description of the evolution
of the scale factor

H2(t) =
8πG

3

[
ρtot(t) +

ρcr − ρ0
a2(t)

]
, (1.23)

where G is Newton’s constant, ρtot(t) =
∑

i ρi(t) the total energy density of the universe (with
the index i labeling the components of the universe), ρ0 its value today. The quantity ρcr =

3H0

8πG

is the critical density, with H0 the Hubble rate today. The Eq. (1.23) is known as the Friedmann
equation [37]. Assuming a spatially flat universe, a scenario we will adopt throughout this thesis,
the Friedmann equation simplifies to

H2(t) =
ρtot(t)

3M2
pl

, (1.24)

where Mpl =
√

1/8πG = 2.4 × 1018 GeV is the reduced Planck mass. At large scales, the
universe can be modeled as a perfect fluid. The energy-momentum tensor for such a fluid takes
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the form

Tµν =


ρ(t) 0 0 0
0 P (t) 0 0
0 0 P (t) 0
0 0 0 P (t)

 , (1.25)

with P (t) the pressure of the fluid. The energy-momentum tensor is conserved

DµT
µ
ν = 0, (1.26)

where Dµ is the covariant derivative. Imposing this for the FLRW metric leads to the continuity
equation

∂tρ(t) = −3H(t) (ρ(t) + P (t)) . (1.27)

This equation allows us to express the energy density as a function of the scale factor

ρ ∝ a−3(1+w), (1.28)

with w = P/ρ the equation of state [37]. As examples, radiation has an equation of state
wrad = 1/3, its energy density depends on the scale factor as ρrad ∝ a−4 and the expansion rate
H ∝ a−2. For matter, w = 0, then ρmat ∝ a−3 and H ∝ a−3/2.

1.2.2 Non-standard early cosmology

Cosmology is the study of the universe’s history. Just like historians represent human history
with timelines divided into distinct periods, cosmologists organize the universe’s history into
eras, each one defined by the type of energy that dominates the universe’s energy budget at the
time. This timeline begins with the big bang and continues to the present day.
Considering the FLRW universe described in the previous section, and including both a
cosmological constant and cold dark matter, we obtain the standard cosmological model,
known as ΛCDM. According to this model, the early universe began with the Big Bang, followed
shortly by a phase of exponential expansion known as inflation. During this epoch, the energy
content of the universe was dominated by a scalar field, the inflaton ϕ. Inflation ends when the
inflaton starts decaying into radiation in a process known as reheating. The end of reheating
initiates the radiation-dominated (RD) era. This period begins at the reheating temperature
(TR), defined by the condition H(TR) ∼ Γϕ, where Γϕ is the inflaton decay rate. It lasts until the
matter-radiation equality at TM-R ∼ 1 eV. After this, the universe enters the matter-dominated
(MD) era. While the story continues, our interest lies in the earlier phases [21, 36].

In standard cosmology, the reheating temperature is assumed to be higher than the freeze-in
temperature, TR ≫ TFI. Under this assumption, the production of FIMP occurs during the
standard RD era. However, there is no observational evidence that support this assumption.
This motivates us to study non-standard cosmological scenarios where the reheating temperature
is lower than the FI temperature, TR < TFI. The reheating temperature is bounded from below
by Big Bang Nucleosynthesis, which requires TR ≳ 10 MeV to ensure successful light element
formation. In this scenario, FIMP are produced during the reheating period. Understanding
the FIMP production in this context requires a closer look at the reheating. During this period,
the inflaton oscillates around the minimum of its potential, decays into radiation, and dumps
entropy. The dynamics of the universe deviate from those of the RD era. Notably, the Hubble
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Figure 1.7: Log-log plot of the energy density (GeV4) evolution of the inflaton (red) and radiation
(blue) for k = 2 (solid lines) and k = 4 (dashed lines) as a function of the scale factor. For
k = 2, the inflaton energy density behaves like matter, while for k = 4, assuming the decay rate
to be constant, it exhibits a different scaling behavior, illustrating how the reheating dynamics
depend on the form of the inflaton potential.

parameter and temperature scale differently with the scale factor than in RD, where H ∼ T 2

and T ∼ a−1.
The reheating period is model dependent. We adopt a monomial potential for the inflaton field

V (ϕ) = λ
ϕk

Mk−4
pl

, (1.29)

with 2 ≤ k < 7 and λ a dimensionless coupling [38]. This choice is consistent with the Planck
2018 observations, which have investigated various inflationary models including potentials of
this form [39]. The equation of motion for the inflaton field, accounting for decay, is

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ) = 0, (1.30)

where the dot and prime denote derivatives with respect to time and ϕ, respectively. The energy
density and pressure of the inflaton field are given by

ρϕ =
1

2
ϕ̇2 + V (ϕ) and Pϕ =

1

2
ϕ̇2 − V (ϕ). (1.31)

It allows us to define the equation of state of the inflaton as wϕ = Pϕ/ρϕ. Due to the oscillatory
behavior, wϕ oscillates between −1 and 1. For this reason we compute the average over some
oscillations, ⟨wϕ⟩ = ⟨Pϕ⟩ / ⟨ρϕ⟩ [38, 40, 41]. From Eq. (1.30), we can apply a virial theorem
argument by averaging over one oscillation period, which yields〈

ϕ̇2
〉
= k ⟨V (ϕ)⟩ . (1.32)
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leading to

⟨ρϕ⟩ =
(
k

2
+ 1

)
⟨V (ϕ)⟩ , (1.33)

⟨Pϕ⟩ =
(
k

2
− 1

)
⟨V (ϕ)⟩ , (1.34)

and thus,

wϕ =
k − 2

k + 2
. (1.35)

The equation of state depends thus on the value of k [40]. A quadratic potential, with k = 2,
yields wϕ = 0, so the inflaton behaves like pressureless matter and the reheating period is
identified as an early matter-dominated (EMD) era without entropy conservation. For a quartic
potential, with k = 4, we find wϕ = 1/3, corresponding to radiation-like behavior, without
entropy conservation. The evolution of the inflaton energy density follows from the continuity
equation, Eq. (1.27), as

ρ̇ϕ = − 6k

k + 2
Hρϕ −

2k

k + 2
Γϕρϕ. (1.36)

Simultaneously, the radiation energy density evolves as

ρ̇R = −4HρR +
2k

k + 2
Γϕρϕ. (1.37)

The first term in each equation accounts for redshift due to expansion, while the second describes
the inflaton’s decay to radiation. The system is closed by the Friedmann equation [38]

H2 =
ρR + ρϕ
3M2

pl

. (1.38)

Solving for ρR(a) allows us to define the temperature via

T (a) =

(
30ρR(a)

π2g⋆

)1/4

, (1.39)

with g⋆ the number of relativistic degrees of freedom (dof), accounting for all particles in thermal
equilibrium at a given temperature. It is defined as

g⋆(T ) =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

, (1.40)

with gi the internal degrees of freedom of species i, and Ti its temperature. As the inflaton
decays, it heats the thermal bath, increasing the temperature until a maximum is reached [38].
In Fig. 1.7, we show the evolution of the energy densities of the inflaton and radiation for
different values of k, assuming the decay rate to be constant, highlighting how this evolution
depends on the specific reheating scenario.
In this thesis, we will investigate how the production of FIMPs and the resulting Lyman-α
constraints are affected in these alternative early cosmological scenarios.
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1.3 Boltzmann equations

Computing this distribution is essential for understanding the properties and the evolution of
dark matter. From fχ, we can derive physically relevant quantities such as the number density

nχ =

∫
d3p

(2π)3
fχ(x, p), (1.41)

which can be used to obtain the comoving number, and the energy density

ρχ =

∫
d3p

(2π)3
E(p)fχ(x, p). (1.42)

For particles in thermal equilibrium, the phase-space distribution f(xµ, pµ), where xµ and pµ

denote the spacetime position and four-momentum respectively, is determined by quantum
statistics. Bosons follow the Bose-Einstein (BE) distribution,

fBE(E) =
1

e(E−µ)/T − 1
, (1.43)

while fermions obey the Fermi-Dirac (FD) distribution,

fFD(E) =
1

e(E−µ)/T + 1
, (1.44)

where E is the particle energy, and µ is the chemical potential. These distributions completely
describe particles that are in kinetic and chemical equilibrium with the thermal bath. However,
in Sec. 1.1.2 we mentioned that FIMPs are never in thermal equilibrium with the bath. As a
result, their phase-space distribution does not follow a Bose-Einstein or Fermi-Dirac distribution.
To determine the phase-space distribution of the out-of-equilibrium FIMP, we need to solve the
Boltzmann equation, first introduced by Ludwig Boltzmann in 1872. Its general form reads

L[fχ] = C̃[fχ], (1.45)

with L[fχ] the Liouville operator and C̃[fχ] the collision term. The left-hand side of this equation
encodes the cosmology, while the right-hand side describes the particle physics.
The relativistic Liouville operator is defined as

L[fχ] = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (1.46)

with Γαβγ the Christoffel symbols. For a homogeneous and isotropic FLRW cosmology, the
distribution depends only on time and energy, fχ(x

µ, pµ) = fχ(t, E). In this case, the Liouville
operator becomes

L[fχ] = E
dfχ
dt
. (1.47)

The collision term for a generic process

ψ + a+ b+ ... −→ i+ j + k + ... .
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is given by

C̃[f ] = g

∫
d3pα
(2π)3

(2π)4δ(pψ + pa + ...− pi − pj − ...)

× [|M |2ψ+a+b+...−→i+j+k+...fafb...fψ(1± fi)(1± fj)...

− |M |2i+j+k+...−→ψ+a+b+...fifj...(1± fa)(1± fb)...(1± fψ)], (1.48)

where α = a, b, ..., i, j, ... , fα is the distribution function of the species α, fψ is the distribution
function of the particle of interest, and |M |2 is the squared matrix element averaged over initial
and summed over final states. The factor (1 ± f) accounts for the Pauli blocking, with the
minus sign, or Bose-Einstein enhancing, for the plus sign. [36].
In our context, the Boltzmann equation simplifies to

dfχ
dt

= C[fχ], (1.49)

with C[fχ] = C̃[fχ]/E. Solving this equation gives us the full phase-space distribution of the
FIMP.
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The momentum distribution function

We’ve seen, in Sec. 1.3 that knowing the phase-space distribution is crucial for understanding
the properties of dark matter and for deriving observational constraints. We aim to investigate
how these properties and constraints are modified when considering alternative histories of
the early universe, particularly, in the case of FIMPs produced from freeze-in through the
decay of a heavier mother particle B. This section is therefore dedicated to computing the
momentum distribution function of FIMPs during a standard radiation-dominated era and
during a reheating period for different values of k, with 2 ≤ k < 7.
In Sec. 2.1, we derive the unintegrated Boltzmann equation describing FIMP from FI produced
by the decay of B for a general early cosmology. Then, we solve analytically this equation for
the standard RD era, in Sec. 2.2, and the EMD era, in Sec. 2.3. Finally, Sec. 2.4, extends the
analytical solution to more general reheating scenarios.

2.1 Boltzmann equation for FIMP production via three-

body decay

FIMPs never achieve thermal equilibrium with the SM bath. Therefore, the momentum
distribution function must be determined by solving the unintegrated Boltzmann equation, Eq.
(1.49),

dfχ
dt

= C[fχ]. (2.1)

To proceed, we first specify this equation for the case of freeze-in production of FIMPs via the
decay of a heavy mother particle B. We introduce a new time variable x = mB/T and a new
momentum variable q = p/T . The time derivative then becomes

dfχ
dt

=
∂fχ
∂x

dx

dt
+
∂fχ
∂q

dq

dt
. (2.2)

Since both the physical momentum p and the temperature T redshift as a−1 during expansion,
their ratio q = p/T remains constant, implying dq/dt = 0. Thus, the second term vanishes, and
the left-hand side simplifies to

dfχ
dt

= −xHξ∂fχ
∂x

, (2.3)

with H the Hubble rate and ξ = d lnT
d ln a

encodes the temperature dependence on the scale
factor [19].

20
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The relevant interaction process that we consider for DM production is the decay of B into an
SM particle A and the FIMP χ

B −→ A+ χ. (2.4)

The general expression for the collision term, given by Eq. (1.48), assuming negligible DM
density, reduces for this decay process to,

C[fχ] =
1

2gχEχ

∫
Πα

d3pα
(2π)32Eα

(2π)4δ4(pA + pχ − pB)fB(1± fB)(1± fχ)|M |2, (2.5)

where α = B,A, p = (E, p⃗) denotes the four-momentum, and |M |2 is the squared amplitude for
the decay. We make several approximations. First, we neglect spin-statistical effects, i.e., we set
(1± f) = 1. We also assume that the mother particle B is in thermal and chemical equilibrium
with the SM bath and is non-relativistic, mB ≫ mχ,mA [19,21]. Its phase-space distribution
function is then approximated by a Maxwell-Boltzmann distribution

fB(x, q) =
YB(x)

Y eq
B (x)

f eq
B (x, q), (2.6)

where the subscript ”eq” refers to equilibrium, and for a non-relativistic particle it takes the form
of a Maxwell-Boltzmann distribution with zero chemical potential. With these assumptions, the
collision term simplifies to

C[fχ] =
1

2gχEχ

∫
Πα

d3pα
(2π)32Eα

(2π)4δ4(pA + pχ − pB)fB|M |2. (2.7)

We now perform the momentum integrals. By separating energy and momentum, the spatial
delta function enforces momentum conservation, p⃗B = p⃗A + p⃗χ, and using the relativistic energy
relation E2 = m2 + p⃗ 2, the integral becomes

C[fχ] =
1

8(2π)2gχEχ

∫
d3pB√
m2
B + p⃗B

2

δ4(EB −
√
m2
A + (p⃗B − p⃗χ)2 − Eχ)√

m2
A + (p⃗B − p⃗χ)2

fB|M |2. (2.8)

We now switch to spherical coordinates

d3pB = |p⃗B|2d|p⃗B|d cos θdϕ. (2.9)

To perform the integration over the delta function, we use the identity

δ(f(x)) =
δ(x− x0)

|f ′(x0)|
, (2.10)

where x0 is the root of f(x) and f ′(x0) =
df
dx
|x0 . Applying this gives the conservation of energy

EA + Eχ = EB. We obtain

C[fχ] =
|M |2

16π|p⃗χ|Eχ

∫
d|p⃗B|√
m2
B + p⃗B

2
|p⃗B|fB. (2.11)

Introducing the variables η = EB/T and q = |p⃗|/T , and assuming T ≫ mA,mB, the integral
simplifies to

C[fχ] =
|M |2

16πqEχ

∫
dηfB(η). (2.12)
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Assuming a Maxwell-Boltzmann distribution for fB, using Eχ ≃ |p⃗χ| = qmB/x and expressing
the squared amplitude in terms of the decay rate as |M |2 = 16πmBgBΓB, the collision term
reads [19]

C[fχ] =
xgBΓB
q2

e−q−
x2

4q . (2.13)

Combining the left-hand side from Eq. (2.3) with the right-hand side from Eq. (2.13), we arrive
at the unintegrated Boltzmann equation for the freeze-in production of χ from the decay of B,

dfχ
dx

= −1

ξ

gBΓB
q2H

e−q−
x2

4q (2.14)

A complete derivation is provided in [19]. This result holds for FIMPs produced via the decay
of a non-relativistic heavy mother particle in thermal and chemical equilibrium with the SM
bath. The history of the early universe, however, is encoded in the Hubble rate H and ξ, which
we have not yet specified.
In the following sections, we particularize this equation to the standard RD, EMD and ”k-
dominated” (kD) eras, and compare the resulting distributions.

2.2 Radiation-dominated era

In this section we solve the unintegrated Boltzmann equation in the case where TR ≫ TFI,
meaning dark matter is produced during a radiation-dominated era. To do this, we integrate
Eq. (2.14) over x = mB/T . First, we express the Hubble rate H and the factor ξ in a RD era
to make their dependence on x explicit.
We start with the factor ξ, which, as a reminder, is defined as

ξ =
d lnT

d ln a
. (2.15)

The temperature dependence on the scale factor can be derived from the evolution of the
radiation energy density. In a standard RD era, the universe is dominated by radiation with
an equation of state w = 1/3. The continuity equation, Eq. (1.28), gives the evolution of the
energy density as ρR ∝ a−4. However, ρR for the radiation bath is given by

ρR =
π2

30
g⋆(T )T

4. (2.16)

It is proportional to T 4. Thus, we deduce T ∝ a−1, and therefore, assuming that g⋆(T ) is
constant for the time of interest1,

ξ = −1. (2.17)

Next, we derive an expression for the Hubble rate H. Starting from the Friedmann equation,
Eq. (1.24), and considering only the contribution of radiation, which dominates during FIMP
production, we have

H =

√
ρR√
3Mpl

=
T 2

M0

, (2.18)

1The reheating temperature is constrained by Big Bang Nucleosynthesis, which occurs at temperatures around
T ∼ MeV. At these temperatures, g⋆(T ) varies significantly. Therefore, assuming g⋆(T ) to be constant in this
regime is not a reliable approximation. A more accurate treatment accounting for the temperature dependence
of g⋆(T ) will be addressed in future work.
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where

M0 =Mpl

√
45

4π3g⋆
. (2.19)

The second equality in Eq. (2.18) comes from the radiation energy density scaling as ρR ∝ T 4.
To make the dependence on x explicit, we use the relation T = mB/x, yielding

H =
m2
B

M0x2
. (2.20)

Substituting the expressions for ξ and H into the unintegrated Boltzmann equation, Eq. (2.14),
we obtain

dfχ
dx

=
gBΓBM0

m2
Bq

2
x2e−qe−

x2

4q . (2.21)

This is the unintegrated Boltzmann equation describing FIMP production in a standard radiation-
dominated era.
This Boltzmann equation can be solved analytically, as the integration over x in the right-hand
side is a Gaussian integral. The solution gives the momentum distribution function for a
radiation-dominated era

f(q)|RD = 2
√
π
gBΓBM0

m2
B

q−1/2e−q. (2.22)

This solution corresponds to the red dashed line in Fig. 2.1 which shows the numerical solution
for the quantity q2f(q) as a function of q. This quantity represents the contribution to the
number density per unit momentum. There are two distinct behaviors depending on the
momentum : at large q, the distribution is exponentially suppressed by the e−q term, while at
small q, the distribution is dominated by the power-law behavior q−1/2.
We can also compute the second moment of the momentum distribution function, which, as a
reminder, is given by 〈

p2
〉
=

∫
d3p p2f(p)∫
d3p f(p)

. (2.23)

In RD era, using Eq. (2.22), we obtain

〈
q2
〉
|RD =

Γ
[
9
2

]
Γ
[
5
2

] = 8.75, (2.24)

where Γ[a] denotes the Gamma function, given by Γ[a] =
∫∞
0
ϵa−1e−ϵdϵ. The second moment

will be useful when we will compute the Lyman-α constraint on FIMP in chapter 4.

2.3 Early matter-dominated era

Having obtained the momentum distribution in a radiation-dominated era, we proceed to study
FIMP production during a reheating period (TR < TFI), characterized by a quadratic potential,
V (ϕ) ∝ ϕk with k = 2, corresponding to wϕ = 0, an early matter-dominated era. Following a
similar approach as in the previous section, we first derive the corresponding expressions for ξ
and H, before solving the unintegrated Boltzmann equation in this regime.
To obtain both ξ and H, we need the evolution of the energy density of inflaton and radiation
as a function of the scale factor. Unlike in the radiation-dominated era, the evolution is not
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Figure 2.1: Log-log plot of the momentum distribution function of FIMP multiplied by the
momentum squared, q2f(q), as a function of the new momentum q = p/T for both RD (red
dashed line) and EMD (solid lines) eras, with a mother particle mass mB = 1 TeV. The solid
lines correspond to different reheating temperatures, ranging from TR = 20 MeV (bottom) to
TR = 500 GeV (top).

straightforward. As explained in Sec. 1.2.2, at the end of inflation, the inflaton field oscillates
around its minimum and decays into radiation. This decay affects the evolution of both the
inflaton and radiation energy densities, leading to the coupled Boltzmann equations

ρ̇ϕ = −3Hρϕ − Γϕρϕ, (2.25)

ρ̇R = −4HρR + Γϕρϕ. (2.26)

The first term on the right-hand side of both equations represents redshift due to the expansion
of the universe, as can be derived from the continuity equation, Eq. (1.27). The second term
accounts for the decay of the inflaton, it decreases ρϕ and increases ρR. In Fig. 1.7, we see the
energy density of the inflaton (red) and radiation (blue) for k = 2 (solid lines). To close the
system, we include the Friedmann equation

H =

√
ρϕ + ρR√
3Mpl

(2.27)

These three equations can be solved numerically to obtain H(a) and ρR(a), and thus T (a) and
ξ. Integrating the Boltzmann equation over x then gives the momentum distribution function in
an early matter-dominated era. The numerical solutions are shown in Fig. 2.1, which displays
q2f(q) as a function of q. The solid lines correspond to different reheating temperatures, while
the dashed line corresponds to RD era, for mB = 1 TeV. The orange solid line corresponds to a
reheating temperature of TR = 500 GeV, which exceeds the FI temperature, TFI ∼ 170 GeV,
computed in the next chapter. Thus, the orange line corresponds to FIMP production during a
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standard RD era, rather than during reheating. Accordingly, it matches the red dashed line,
integrating under the curves yields equivalent relic densities, ΩEMD

χ |TR=500GeV ≃ 7.3×10−7 ≃ ΩRD
χ .

As observed, the momentum distribution in EMD era closely resembles that in RD era. They
coincide at high momentum, while at low momentum the slope differs. Changing the reheating
temperature mainly shifts up and down the momentum distribution.

This similarity suggests that an analytical solution for the momentum distribution function in
an EMD era might exist. In the previous section, we derived the analytical solution for the
RD era, Eq. (2.22), and noted that at high momentum, the dominant term is e−q. A similar
behavior is expected here. At low momentum, while the RD distribution scaled as q−1/2, we
anticipate a different power-law dependence in the EMD case. To find an analytical solution,
we solve the coupled Boltzmann and Friedmann equations.
First, we consider the evolution of the inflaton energy density. Before reheating, we assume that
H ≫ Γϕ, allowing us to neglect the decay term. Thus, the inflaton energy density redshifts as
matter [20,38,42]

ρϕ = ρϕ(ain)
(ain
a

)3
, (2.28)

with ain = a(Tin) the scale factor at the end of inflation. Substituting this expression into the
Friedmann equation and neglecting the radiation energy density ρR during reheating, we obtain
an approximate expression for the Hubble rate

H ≃
√
ρϕ√

3Mpl

=

√
ρϕ(ain)√
3Mpl

(ain
a

)3
. (2.29)

This leads to a non-homogeneous first-order differential equation for ρR whose solution reads

ρR =
2
√
3

5
MplΓϕ

√
ρϕ(ain)

[(ain
a

)3/2
−
(ain
a

)4]
(2.30)

Initially, at a = ain, ρR = 0, as expected. Relating ρR to the temperature via Eq. (1.39), we
recover the scaling behavior during reheating. The temperature reaches a maximum, Tmax, at
amax = (8/3)2/5ain, after which

T (a) = Tmax

(amax

a

)3/8
. (2.31)

Thus, Eq. (2.30), tell us that, during EMD, ρR ∝ a−3/2 and T ∝ a−3/8, which evolves more
slowly than during the radiation-dominated era. The corresponding ξ factor is

ξ = −3

8
. (2.32)

We now express H explicitly as a function of x. Using Eq. (2.31), we write

H =

√
ρϕ(ain)√
3Mpl

(
T

Tmax

)4

[Tmax > T > TR] . (2.33)

Since the reheating temperature is a parameter of our theory, we want to express the Hubble rate
in terms of TR. The reheating temperature is related to Tmax through the definition H(TR) ≃ Γϕ,
allowing us to express H as

H =
1

M̃0

T 4

T 2
R

=
1

M̃0

m4
B

T 2
Rx

4
[Tmax > T > TR] , (2.34)
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numerical solution : TR=20 GeV

analytical solution : TR=20 GeV
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Figure 2.2: Log-log plot of the momentum distribution function of FIMP produced during an
EMD era, comparing the analytical solution (solid line) with the numerical results (dots), as
a function of q = p/T , for a reheating temperature TR = 20 GeV and with a mother particle
mass mB = 1 TeV. The plot shows good agreement between both approaches across the full
momentum range.

where

M̃0 = (0.3)4Mpl

√
2π2g⋆
15

. (2.35)

Substituting ξ and the Hubble rate H into the unintegrated Boltzmann equation, Eq. (2.14),
gives

dfχ
dx

=
8

3

gBΓBM̃0

m2
Bq

2

T 2
R

m2
B

x4e−qe−
x2

4q . (2.36)

This is a Gaussian integral in x, which can be solved analytically. The result is the momentum
distribution function for an EMD era

f(q)|EMD = 2
√
π
gBΓBM̃0

m2
B

(
TR
mB

)2

q1/2e−q. (2.37)

Comparing with the RD era solution, Eq. (2.22), we find that at high momenta, the distributions
coincide, both dominated by the e−q exponential. However, at low momenta, the EMD
distribution scales as q1/2 rather than q−1/2, explaining the change in slope observed in Fig.
2.1. This difference originates from distinct scaling of the Hubble rate with x. In Fig. 2.2, we
compare the analytical (solid line) and numerical (dot) solution of the momentum distribution
function for FIMP produced in EMD era, for TR = 20 GeV and mB = 1 TeV.
We also compute the second moment of the momentum distribution for FIMP production during
an EMD era 〈

q2
〉
|EMD =

Γ
[
11
2

]
Γ
[
7
2

] = 15.75. (2.38)
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This value is higher than in the RD era, indicating that FIMPs produced during reheating are,
on average, hotter, they carry more momentum relative to their mass at the time of production.
Consequently, these particles have a larger free-streaming length compared to FIMPs produced
during RD era, potentially leading to a stronger suppression of small-scale structure.

2.4 Generalization to k-dominated early cosmology

In the previous section, we derived an analytical solution for the momentum distribution function
of FIMPs produced via FI from the decay of a heavy mother particle, during a reheating period
described by a quadratic potential. In this section, we aim to generalize this solution to arbitrary
monomial potentials for the inflaton,

V (ϕ) = λ
ϕk

Mk−4
pl

. (2.39)

To do so, we first introduce additional parameters that capture the relevant features of the
reheating process, in Sec. 2.4.1. We then derive the momentum distribution function for
fermionic reheating (FR) in Sec. 2.4.3, and for bosonic reheating (BR) in Sec. 2.4.2.

2.4.1 Fermionic and Bosonic reheating

If we want to generalize the analytical solution for the momentum distribution function to
arbitrary values of k, particularly for 2 < k < 7, we need a more detailed understanding of the
inflaton decay process. Up to now, we have emphasized that choosing a value of k determines
the equation of state during reheating, which sets the time evolution of the Hubble rate and
thus affects the freeze-in production of FIMPs. However, for k > 2, the choice of k also impacts
the inflaton’s decay rate. The inflaton decay rate is a key ingredient controlling the evolution of
both the inflaton and radiation energy densities. We have already seen that the behavior of
these densities changes for different values of k, assuming Γϕ constant, as illustrated in Fig. 1.7.
In this section, we will explain how, for 2 < k < 7, the decay rate Γϕ becomes field-dependent,
and how this dependence impacts the momentum distribution function [38,41,43].
During the reheating period, the inflaton begins to oscillate around its potential minimum and
decays into high-energy particles. We consider two possible decay channels: bosonic reheating,
where the inflaton decays into a pair of bosons, and fermionic reheating, where it decays into a
pair of fermions. The interaction terms in the Lagrangian are, respectively,

Lint ⊃ µϕXX and Lint ⊃ yϕff̄ , (2.40)

where X and f denote a boson and a fermion, respectively, µ is a dimensionful coupling constant,
and y is a Yukawa coupling [41]. The subtlety introduced when k > 2 is due to the field
dependence of the inflaton mass. Recall that the dynamics of the field is governed by the
equation of motion

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ). (2.41)

We parametrize the inflaton field as

ϕ(t) = ϕ0(t)P (t), (2.42)
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where ϕ0(t), the envelope, encodes the effect of redshift and decay and P (t) the anharmonicity
of the short timescale oscillations [41]. The decay rate of the inflaton will involve the mass of
the inflaton, obtained from the potential

m2
ϕ(t) = V ′′(ϕ) = k(k − 1)λ

ϕ(t)k−2

Mk−4
pl

. (2.43)

We see that when k > 2 the mass of the inflaton depends on the field. Therefore, the oscillations
of the inflaton affect mϕ, and consequently Γϕ. This is not the case when k = 2, where mϕ is
constant. This is why we did not introduce this subtlety earlier.
To deal with this complication, we need to take an average over oscillations. We now proceed to
compute the decay rates for both scenarios.

We begin with the bosonic reheating process. In this scenario, the inflaton could decay into
Higgs particles, or, if we consider a Majorana dark matter scenario, into the mother particle
B [38]. Assuming that the mass of the final state particles is negligible compared to the inflaton
mass, the inflaton decay rate, averaged over oscillations, is given by

Γϕ→XX(t) =
µ2
eff(k)

8πmϕ(t)
, (2.44)

where µeff is the effective coupling due to the average over oscillations. It is related to the
coupling µ by

µ2
eff(k) =

(k + 2)(k − 1)

4

ω

mϕ

αµ(k,R)µ2, (2.45)

where ω is the frequency of oscillations of ϕ, defined as

ω = mϕ

√
πk

2(k − 1)

Γ(k+2
2k

)

Γ( 1
k
)
. (2.46)

The factor αµ(k,R) is referred to as the coupling strength, where R ∝ (meff/mϕ)
2 is a kinematic

factor involving the effective mass meff of the decay products. When R ≪ 1, the effective
mass induced by the inflaton is negligible, and the decay products can be considered effectively
massless. However, as k increases, R grows significantly. In particular, as k approaches 7, one
enters a regime where R ≫ 1, and the inflaton decay transitions from a perturbative to a
non-perturbative process. Such regimes require a dedicated treatment beyond the framework
developed here, which assumes perturbative decay throughout. This justifies restricting our
analysis to values of k < 7, ensuring the validity of the perturbative approach [41]. It is also
worth noting that for k = 2, one finds µeff = µ, since the decay rate is independent of the
inflaton’s oscillations in this case [38, 41,43].

For fermionic reheating, we consider the inflaton decaying into a pair of fermions. Because
fermions are chiral particles, the inflaton cannot decay directly into them, we need to introduce
a vectorlike or Majorana fermion as an intermediate state [38]. This state could be identified as
the mother particle B. Under the same assumption that the mass of the final state fermions is
negligible compared to the inflaton mass, the decay rate, averaged over oscillations, is

Γϕ→ff̄ (t) =
y2eff(k)

8π
mϕ(t), (2.47)
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Figure 2.3: Log-log plot of the decay rate of the inflaton as a function of the scale factor for
both bosonic (blue) and fermionic (red) reheating scenarios with k = 4, and for k = 2 (Black
dashed). For k = 2, the decay rate remains constant over time, yielding identical behavior
in both scenarios. In contrast, for k = 4, the decay rate increases with time in the bosonic
case, as the inflaton field decreases, while it decreases in the fermionic case, highlighting the
fundamentally distinct dynamics when k > 2.

where yeff is the effective coupling due to the average over oscillations, related to the coupling y
as

y2eff(k) =
ω

mϕ

αy(k,R)y2. (2.48)

As before, for k = 2, we recover yeff = y [38, 41].
The difference betwexen bosonic and fermionic reheating arises from the distinct dependence
of the decay rate on the inflaton mass, which in turn leads to different dependence of the
field. In Fig. 2.3, we observe the evolution of Γϕ(a) as a function of the scale factor for
both reheating scenarios. The two cases exhibit opposite behaviors: for bosonic reheating,
Γϕ→XX(t) ∝ 1/mϕ(t) ∝ ϕ

2−k
2 (t), which for k = 4 gives Γϕ→XX(t) ∝ ϕ−1. Consequently, as

the universe expands, ϕ(t) decreases and the decay rate increases. In contrast, for fermionic

reheating, Γϕ→ff̄ (t) ∝ mϕ(t) ∝ ϕ
k−2
2 (t), which for k = 4 yields Γϕ→ff̄ (t) ∝ ϕ(t). As the universe

expands, ϕ(t) decreases, and the decay rate decreases as well.
In the next two sections, we will derive how does the evolution of the energy density is affected by
these results and compute the momentum distribution function for both bosonic and fermionic
reheating, respectively. For both cases, the evolution of the inflaton and radiation energy
densities follows from the continuity equation, Eq. (1.27), modified to include the decay term

ρ̇ϕ = − 6k

k + 2
Hρϕ −

2k

k + 2
Γϕ(t)ρϕ, (2.49)

ρ̇R = −4HρR +
2k

k + 2
Γϕ(t)ρϕ, (2.50)
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where Γϕ(t) denotes the time-dependent decay rate of the inflaton, which differs in form between
the bosonic and fermionic cases. Assuming H ≫ Γϕ(t), valid at early times during reheating,
the decay term can be neglected in Eq. (2.49), leading to the approximate solution

ρϕ(a) = ρϕ(ain)
(ain
a

) 6k
k+2

. (2.51)

Neglecting radiation in the Friedmann equation during this phase, the Hubble parameter evolves
as

H(a) ≃
√
ρϕ√

3Mpl

=

√
ρϕ(ain)√
3Mpl

(ain
a

) 3k
k+2

[Tmax > T > TR] . (2.52)

2.4.2 Momentum distribution function for bosonic reheating

To derive the momentum distribution function for FIMPs during a bosonic reheating, we start
from the unintegrated Boltzmann equation, Eq. (2.14). We apply the same method as used
for RD and EMD eras, expressing ξ and H in terms of x = mB/T , and then performing the
integration.
Using the solutions for the inflaton energy density and the Hubble parameter given in Eqs.
(2.51) and (2.52), together with the envelope approximation ρϕ(t) = V (ϕ0(t)), which allows us
to relate the mass of the inflaton to its energy density as [41]

m2
ϕ(t) ≃ k(k − 1)λ2/kM

2(4−k)
k

pl ρ
k−2
k

ϕ (t), (2.53)

we solve for ρR, yielding

ρR =

√
3

8π

1

1 + 2k

√
k

k − 1

µ2
eff

λ1/k
M

2k−4
k

pl ρ
1/k
ϕ (ain)

[(ain
a

) 6
2+k −

(ain
a

)4]
. (2.54)

Figure 2.4a shows the evolution of the energy densities of the inflaton (green) and radiation (blue)
as a function of the scale factor, for both k = 2 (solid lines) and k = 4 (dashed lines). We observe
that reheating occurs significantly earlier for k = 4, around a ∼ 1010, compared to a ∼ 1022 for
k = 2. This can be understood by examining Fig. 2.3, which shows that Γϕ(k = 4) > Γϕ(k = 2).
A larger decay rate implies a shorter inflaton lifetime, i.e., τϕ(k = 4) < τϕ(k = 2), and therefore,

reheating takes place earlier for larger k. Thus, during bosonic reheating we find ρR ∝ a−
6

2+k

and T ∝ a−
3

4+2k , leading to the corresponding factor ξ

ξ = − 3

4 + 2k
. (2.55)

The radiation energy density reaches a maximum at amax = ain
(
2k+4
3

) k+2
4k+2 , where the temperature

is maximum. From there, the temperature redshifts as

T = Tmax

(ain
a

) 3
4+2k

. (2.56)

Using definition of the reheating temperature, the Hubble rate can be expressed as

H =
1

M0

T 2k

T 2k−2
R

=
1

M0

m2k
B

T 2k−2
R x2k

[Tmax > T > TR] . (2.57)
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Figure 2.4: Log-log plot of the evolution of the energy densities (GeV4) of the inflaton (green)
and radiation for (a) bosonic reheating (blue) and (b) fermionic reheating (red) as a function
of the scale factor for k = 2 (solid lines) and k = 4 (dashed lines). We have considered the
parameter values µ = 10−13 Mpl, y = 10−7, and an initial inflaton energy density ρϕ(ain) =M4

gut,
where Mgut = 1016 is the grand unified theory (GUT) scale.
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Figure 2.5: Log-log plot of the normalized momentum distribution functions, q2f(q), as a
function of the momentum q = p/T , for FIMPs produced under different cosmological scenarios
with mB = 1 TeV. The dashed line corresponds to the standard RD case, while the solid
black line represents an EMD era with k = 2. The dot-dashed blue and red curves show the
distributions for bosonic and fermionic reheating with k = 4, respectively. The inset is a linear
plot of the same distributions, zooming in to highlight the position of the peak.

Substituting ξ and H into Eq. (2.14) gives

dfχ
dx

=

(
4 + 2k

3

)
gBΓBM0

m2
Bq

2

(
TR
mB

)2k−2

x2ke−qe−
x2

4q . (2.58)

This is a Gaussian integral in x, which can be solved analytically. The result is the momentum
distribution function of FIMPs for 2 < k < 7 during a bosonic reheating

f(q)|BR = 2k
√
π (2k − 1)!

(
4 + 2k

3

)
gBΓBM0

m2
B

(
TR
mB

)2k−2

qk−3/2e−q. (2.59)

Figure 2.5 shows q2f(q) as a function of q for bosonic reheating with k = 4 (solid blue), along
with the corresponding momentum distribution functions for the standard RD era (dashed
black) and an EMD era (solid black). In the bosonic reheating case with k = 4, the distribution
scales as f(q) ∝ q5/2 at low momentum, which is steeper than the EMD case (f(q) ∝ q1/2) and
the RD case (f(q) ∝ q−1/2). This steeper rise at low q is clearly visible in Fig. 2.5. At high
momentum, all distributions, including those from bosonic reheating, EMD and RD, exhibit the
same exponential suppression, scaling as e−q.
The second moment of the momentum distribution function, defined by Eq. (2.23), is

〈
q2
〉
|BR =

Γ[7
2
+ k]

Γ[3
2
+ k]

. (2.60)
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Figure 2.6: Second moment of the FIMP momentum distribution function for both bosonic (blue)
and fermionic (red) reheating, shown as a function of the parameter k. For bosonic reheating,
the second moment increases monotonically with k, while for fermionic reheating, it approaches
an asymptotic value for large k. This demonstrates that FIMPs produced during fermionic
reheating carry less momentum at production than their bosonic counterparts, resulting in
colder dark matter.

Figure 2.6 illustrates how the second moments of the momentum distribution function vary
with the parameter k for a bosonic reheating, in blue. For bosonic reheating, we observe a clear
monotonic increase in the second moment as k increases. When k = 2, corresponding to the
early matter-dominated era, we recover the expected value ⟨q2⟩ |k=2

BR = 15.75, see Sec. 2.3. As k
increases to 4, the second moment rises substantially to ⟨q2⟩ |k=4

BR = 35.75, indicating that FIMPs
produced during bosonic reheating with higher k values carry significantly more momentum at
production than those produced during the standard RD era.

2.4.3 Momentum distribution function for fermionic reheating

The derivation of the momentum distribution function for FIMPs during fermionic reheating
closely follows the bosonic case. The Hubble parameter and the evolution of the inflaton energy
density are also given by Eqs. (2.51) and (2.52). However, the distinct field dependence of the
fermionic decay rate leads to a different expression for the radiation energy density

ρR =

√
3

8π

k
√
k(k − 1)

7− k
y2effλ

1/kM
4/k
pl ρ

k−1
k

ϕ (ain)

[(ain
a

) 6(k−1)
2+k −

(ain
a

) 12(k−1)(7−k)
2+k

]
(2.61)

Figure 2.4b shows the evolution of the energy densities of the inflaton (green) and radiation (red)
as a function of the scale factor, for both k = 2 (solid lines) and k = 4 (dashed lines). In contrast
to the case of bosonic reheating displayed in Fig. 2.4a, we see that the reheating happens later
than for k = 2, around a ∼ 1032, compared to a ∼ 1022 for k = 2. Looking at Fig. 2.3, we
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see the opposite behavior for fermionic reheating, meaning that now Γϕ(k = 4) < Γϕ(k = 2)
and thus τϕ(k = 4) > τϕ(k = 2). It explains why the reheating happens at a later time. Thus,

ρR ∝ a−
6(k−1)
2+k and T ∝ a−

3(k−1)
4+2k , leading to

ξ = −3k − 3

4 + 2k
. (2.62)

The radiation energy density reaches a maximum at amax = ain
(
2k+4
3k−3

) k+2
14−2k . We define a

maximum temperature from where the temperature redshifts as

T = Tmax

(ain
a

) 3k−3
4+2k

. (2.63)

The Hubble rate in terms of temperature becomes

H =
1

M0

T
2k
k−1

T
2k
k−1

−2

R

=
1

M0

m
2k
k−1

B

T
2k
k−1

−2

R x
2k
k−1

[Tmax > T > TR] . (2.64)

Substituting into Eq. (2.14), we obtain

dfχ
dx

=

(
4 + 2k

3k − 3

)
gBΓBM0

m2
Bq

2

(
TR
mB

) 2k
k−1

−2

x
2k
k−1 e−qe−

x2

4q . (2.65)

This Gaussian integral yields

f(q)|FR = 2
k

k−1
√
π

(
k + 1

k − 1

)
!

(
4 + 2k

3k − 3

)
gBΓBM0

m2
B

(
TR
mB

) 2
k−1

−2

q
3k−5
2k−2 e−q. (2.66)

Figure 2.5 also displays the momentum distribution function for fermionic reheating with k = 4
(solid red). Similar observations to those made for bosonic reheating apply here. For fermionic
reheating with k = 4, the distribution scales at low momentum as f(q) ∝ q7/6, which is steeper
than the EMD case (f(q) ∝ q1/2), but less steep than the bosonic reheating case (f(q) ∝ q5/2).
This intermediate behavior is clearly visible in Fig. 2.5. At high momentum, all distributions,
including that from fermionic reheating, follow the same exponential suppression, scaling as e−q.
The second moment of the momentum distribution function, defined by Eq. (2.23), is

〈
q2
〉
|FR =

Γ[1 + 13−11k
2−2k

]

Γ[1 + 9−7k
2−2k

]
. (2.67)

For fermionic reheating, Figure 2.6 reveals that the second moment increases more gradually
with k, eventually approaching an asymptotic value. At k = 2, we recover the same value as
bosonic reheating, ⟨q2⟩ |k=2

FR = 15.75. However, for k = 4, we find ⟨q2⟩ |k=4
FR = 21.53, which is

considerably lower than the corresponding value for bosonic reheating (⟨q2⟩ |k=4
BR = 35.75). This

significant difference demonstrates that FIMPs produced during fermionic reheating carry less
momentum at production than their bosonic counterparts, resulting in colder dark matter. This
is clearly visible in the inset of Fig. 2.5, where the peak of the distribution for bosonic reheating
appears at a higher value of q compared to that of fermionic reheating. It implies that FIMPs
produced during bosonic reheating indeed carry more momentum at production than those
produced during fermionic reheating with the same k value.
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2.5 Summary of the momentum distributions in different

early universe scenarios

Table 2.1 summarizes key properties of the momentum distribution function f(q) for FIMPs
produced via FI through decay in different early-universe scenarios. It includes the temperature
dependence of the Hubble rate H(T ), the value of ξ, the momentum dependence of f(q), and
the second moment ⟨q2⟩.

Scenario Scaling of H(T ) ξ Scaling of f(q) ⟨q2⟩

RD T 2 −1 q−1/2e−q 8.75

EMD (k = 2)
T 4

T 2
R

−3

8
q1/2e−q 15.75

BR (k ≥ 2)
T 2k

T 2k−2
R

− 3

4 + 2k
qk−3/2e−q

Γ[7
2
+ k]

Γ[3
2
+ k]

FR (k ≥ 2)
T

2k
k−1

T
2k
k−1

−2

R

−3k − 3

4 + 2k
q

3k−5
2k−2 e−q

Γ[1 + 13−11k
2−2k

]

Γ[1 + 9−7k
2−2k

]

Table 2.1: Summary of the momentum distribution functions and second moment for FIMPs
produced in different cosmological scenarios.



Chapter 3

The comoving number density

The comoving number density is a key concept to understand the evolution of FIMP production.
This quantity will let us determine the moment of the freeze-in, xFI, defined as the first maximum
of the comoving number density. It will also emphasize a property of reheating not yet introduced,
the dilution factor. For all these reasons, this chapter is dedicated to the computation of the
comoving number density of FIMP produced via the decay of a heavy mother particle, during a
standard RD, EMD, and kD eras for a bosonic and fermionic reheating.
First, in Sec. 3.1, we derive the Boltzmann equation for the comoving number density. Then,
we derive the comoving number density both for RD, in Sec. 3.2, and EMD eras, in Sec. 3.3.
Finally, we extend the analysis to kD era for a bosonic and fermionic reheating in Sec. 3.4.

3.1 Boltzmann equation for the comoving number density

The Boltzmann equation for the comoving number density is derived from the unintegrated
Boltzmann equation for the phase-space distribution, given in Eq. (1.49). To transition from
the phase-space distribution to the number density, we use the definition

nχ(x) =

∫
d3p

(2π)3
fχ(x, p). (3.1)

Integrating both sides of Eq. (1.49) over momentum then yields the Boltzmann equation
governing the evolution of the number density

ṅχ + 3Hnχ =

∫
d3pχ

(2π)32Eχ
C[fχ]. (3.2)

The right-hand side is obtained by applying the same assumptions as in Sec. 2.1, namely that χ
is produced via the decay of a heavy mother particle B in thermal and chemical equilibrium
with the bath, considered non-relativistic, and that spin-statistic effects can be neglected. Under
these conditions, the collision term simplifies to∫

d3pχ
(2π)32Eχ

C[fχ] = neq
B ΓB

K1[mB/T ]

K2[mB/T ]
, (3.3)

where K1,2 are the modified Bessel functions of the first and second kind, and neq
B the equilibrium

number density of the mother particle, given by

neq
B = gB

∫
d3p

(2π)3
f eq
B =

gB
2π2

m2
BTK2[mB/T ]. (3.4)
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Substituting the expression for the collision term into Eq. (3.2), we obtain the Boltzmann
equation for the number density [18,20,36].

ṅχ + 3Hnχ = neq
B ΓB

K1[mB/T ]

K2[mB/T ]
. (3.5)

In the following section, we solve this equation in RD era before going to non-standard cosmolo-
gies.

3.2 Radiation-dominated era

In this section we solve the Boltzmann equation for the number density, given by Eq. (3.5),
for FIMP produced during a RD era. To factor out the effect of expansion, it is convenient to
introduce the comoving number density

Yχ =
nχ
s
, (3.6)

where s is the entropy density. For radiation, it is defined as

s(T ) =
2π2

45
g⋆s(T )T

3, (3.7)

where g⋆s represents the effective relativistic degrees of freedom for entropy

g⋆s(T ) =
∑
bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

. (3.8)

The comoving number density remains constant under adiabatic expansion in absence of processes
changing the number of particles, since both the number density and the entropy density scale
as a−3 [18, 20]. Introducing this variable and changing the time derivative to a derivative with
respect to x = mB/T , Eq. (3.5) becomes

dYχ
d lnx

=
1

H(x)
Y eq
B ΓB

K1[x]

K2[x]
. (3.9)

Substituting the expression for the Hubble rate in RD era, given by Eq. (2.18), we obtain

dYχ
d lnx

=
M0ΓB
m2
B

Y eq
B x2

K1[x]

K2[x]
. (3.10)

This equation can be solved numerically to obtain the evolution of the comoving number density.
The solution is shown in Fig. 1.4 for different values of the decay width ΓB. To better understand
the behavior of the comoving number density, we refer to the approximate solution obtained
from the rule-of-thumb argument, Eq. (1.9), which reads

Yχ(x) ≃
ΓBMpl

m2
B

x3. (3.11)

This expression shows the IR domination of the freeze-in process mentioned in Sec. 1.1.2, as it
shows that the comoving number density increases with decreasing temperature, i.e., increasing
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x. It also illustrates the dependence of the FIMP comoving number density on the properties
of the mother particle: a larger mB leads to a lower FIMP abundance, while a larger decay
rate ΓB results in a higher abundance, as illustrated in Fig. 1.4. However, this approximation
is only valid while the abundance of the mother particle B remains high, i.e., for x < 3. At
this point, freeze-in occurs, and beyond x = 3, H > Y eq

B ΓB, and the abundance of B becomes
Boltzmann suppressed. As a result, Yχ reaches a constant asymptotic value, Y ∞

χ = Yχ(xFI).
Using our expression for Yχ(x) and that xFI ≃ 3, we find

Y ∞
χ ≃ 10

ΓBM0

m2
B

. (3.12)

Rigorously, this value is obtained by integrating Eq. (3.10) analytically from 0 to ∞, assuming
that the initial number density of FIMP is zero [20]. This asymptotic value corresponds to the
total comoving abundance of χ particles produced through the freeze-in mechanism. From this
result, the relic density today is given by

Ωχh
2 =

mχY
∞
χ s0

ρcrit/h2
≃ 10

ΓBM0

m2
B

mχs0
ρcrit/h2

, (3.13)

where s0 is the entropy density today [18, 20, 22]. This result matches the estimate obtained
using the rule-of-thumb approach discussed in Sec. 1.1.2. It allows us to place constraints
on the properties of both the mother particle B and the FIMP by requiring consistency with
the observed dark matter abundance, assuming that FIMPs account for all the dark matter,
Ωχh

2 ≈ 0.12.

3.3 Early matter-dominated era

We now solve Eq. (3.5) for FIMPs produced during an early matter-dominated era. In this
case, FI occurs before the end of reheating, at a temperature TFI > TR. During the reheating
period, entropy is not conserved due to the decay of the inflaton into radiation. Consequently,
the comoving number density is diluted for TFI > T > TR. Even in the absence of any processes
that change the number of particles, the comoving number density Yχ does not remain constant
but decreases due to this entropy injection. To better describe the evolution of the number
density in this regime, we introduce a new variable

X = nχa
−3. (3.14)

which has an analogous role as Yχ in RD, it remains constant after freeze-in occurs. Substituting
this variable and changing the time derivative to a derivative with respect to the scale factor,
Eq. (3.5) becomes

dX
d ln a

=
a3

H(a)
neq
B ΓB

K1

[
mB

T

]
K2

[
mB

T

] . (3.15)

This equation can be solved numerically using the Friedmann equation for H, Eq. (1.38),
together with the coupled Boltzmann equations for ρϕ and ρR, given by Eqs. (2.25) and
(2.26) [20]. The numerical results are presented in Fig. 3.1, which shows the comoving number
density of the FIMP as a function of x. The dashed purple curve represents the solution for
the RD era, while the solid lines correspond to the EMD era, with reheating temperatures
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TR = 25 GeV (blue), TR = 100 GeV (red) and TR = 100 TeV (green). We observe that the
location of the first maximum of Yχ differs between the RD (vertical dashed line) and EMD
(vertical long-dashed line) eras. This maximum indicates the moment of freeze-in, which occurs
at xFI|EMD ≃ 6, compared to xFI|RD ≃ 3. Therefore, freeze-in happens at a lower temperature
in the EMD era. Taking mB = 1 TeV, the corresponding freeze-in temperature is

TFI =
( mB

1 TeV

)(xFI
6

)−1

. (3.16)

For TR = 100 TeV, we observe a change in the slope that signals the transition from an EMD
era to a RD era. However, this transition occurs before freeze-in takes place, and thus it does
not impact the final yield. This explains why, in Fig. 2.1, the curve corresponding to TR = 500
GeV shows a slight deviation at low q, yet ultimately results in the same relic density.
To understand the physics behind the curves in Fig. 3.1, we consider the approximate solution
Eq. (1.8) for the EMD era [20]. Using the Hubble rate derived in Eq. (2.29), the approximate
production of Yχ = X/S, for x < 6, is

Yχ(x) ≃
ΓBM̃0

m2
B

(
TR
mB

)2

x5. (3.17)

This expression exhibits an explicit dependence on the reheating temperature, with Yχ ∝ T 2
R.

A higher reheating temperature therefore leads to a larger FIMP abundance, which explains
the difference between the blue and red curves in Fig 3.1. Moreover, the scaling Y EMD

χ ∝ x5, in
the EMD era differs from Y RD

χ ∝ x3 in the RD era, which accounts for the steeper slope of the
EMD production curves, shown in Fig. 3.1.
We cannot estimate Y ∞

χ directly from Yχ(xFI), because the number density is diluted between
TFI and TR. This explains the drop observed in Fig. 3.1 after the production peak, before
reaching the final plateau, unlike in the RD case, where the plateau is reached immediately
after freeze-in. We quantify this dilution with the ratio of the entropy at temperature T to the
entropy at the reheating temperature

D(T ) =
S(T )

S(TR)
=

s(T )a3(T )

s(TR)a3(TR)
[Tmax > T > TR] . (3.18)

From the relation between the temperature and the scale factor in the EMD era, Eq. (2.31), we
deduce

D(T ) =

(
TR
T

)5

(3.19)

Taking this dilution into account, we define the effective comoving number density

Ỹχ(x) = Yχ(x)D(x) ≃ ΓBM̃0

m2
B

(
TR
mB

)7

x10. (3.20)

This shows that the process is extremely IR dominated [20]. Using this expression and the
moment of the FI, xFI ≃ 6, we estimate the asymptotic comoving number density as

Ỹ ∞
χ ≃ 107

(
TR
mB

)7
ΓBM̃0

m2
B

. (3.21)
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Figure 3.1: Log-log plot of the comoving number density Yχ as a function of x = mB/T for
FIMPs with mB = 1 TeV produced during RD (purple dashed) and EMD eras with TR = 25
GeV (blue), TR = 100 GeV (red) and TR = 100 TeV (green). The vertical dashed lines indicate
the freeze-in temperature for RD (xFI ≃ 3) and EMD (xFI ≃ 6) eras. The decrease in the red
and blue curves illustrates the entropy dilution effect absent in standard cosmology.

Compared to the RD era, the final abundance is suppressed by a factor (TR/mB)
7, which

explains the several orders of magnitude difference seen in Fig. 3.1. We use this estimation to
compute the relic density

Ωχh
2 =

mχỸ
∞
χ s0

ρcrit/h2
≃ 107

(
TR
mB

)7
ΓBM̃0

m2
B

mχs0
ρcrit/h2

. (3.22)

The same suppression factor affects the relic density of FIMP today. Consequently, the constraints
on the properties of the mother particle and the FIMP, derived by imposing Ωχh

2 ≈ 0.12, are
reduced by this factor. This leads to an interesting outcome: it allows for heavier FIMPs while
still permitting the mother particle to decay within the detector of a collider experiment [20].

3.4 Early k-dominated era

The derivation of the comoving number density of FIMPs during an early matter-dominated
era can be extended to an early cosmology characterized by a monomial inflaton potential,
parametrized by the value k, with 2 < k < 7. As discussed in Sec. 2.4.1, obtaining a general
result requires specifying the reheating mechanism that is responsible for the transitions to the
radiation-dominated era. In this section, we consider both bosonic and fermionic reheating
scenarios and derive the evolution of the FIMP comoving number density produced during
reheating with 2 < k < 7.
As in the EMD case, the evolution of the comoving number density is governed by the Boltzmann
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equation
dX
d ln a

=
a3

H(a)
neq
B ΓB

K1

[
mB

T

]
K2

[
mB

T

] , (3.23)

where X = na3 and H is obtained from the Friedmann equation, Eq. (1.38), using the energy
densities of inflaton given by Eq. (2.49) and radiation given by Eq. (2.50) for bosonic reheating,
and Eq. (2.61) for fermionic reheating. The comoving number density is then defined as

Y (T ) =
X (T )

S(T )
. (3.24)

To better understand the distinct features of the two reheating scenarios, we derive approximate
expressions for Yχ. Starting from Eq. (1.8) and using the Hubble rates for each case, Eqs. (2.57)
and (2.64), we obtain

Yχ(x) ≃
ΓBM0

m2
B

(
TR
mB

)2k−2

x2k+1, BR (3.25)

Yχ(x) ≃
ΓBM0

m2
B

(
TR
mB

) 2
k−1

x
3k−1
k−1 , FR (3.26)

in agreement with [38]. We observe that for bosonic reheating, the power of x increases with
k, leading to steeper production for higher k. In contrast, the exponent in the fermionic case
decreases with increasing k, indicating a more gradual production. However, the dilution of the
comoving number density due to entropy production during reheating must also be taken into
account [38]. Using the relations between T and a given by Eq. (2.56) for bosonic reheating
and Eq. (2.63) for fermionic reheating, the dilution factor is, for Tmax > T > TR,

D(T, k) =

(
TR
T

)1+2k

, BR (3.27)

D(T, k) =

(
TR
T

) 7−k
k−1

. FR (3.28)

These relations lead to distinctive behaviors between bosonic and fermionic reheating. For
bosonic reheating, the exponent (1 + 2k) increases monotonically with k, leading to stronger
dilution at higher k. However, for fermionic reheating, the exponent 7−k

k−1
decreases with increasing

k, resulting in weaker dilution at higher k. Including this effect, the approximate comoving
number densities become [38]

Ỹχ(x) ≃
ΓBM0

m2
B

(
TR
mB

)4k−1

x4k+2, BR (3.29)

Ỹχ(x) ≃
ΓBM0

m2
B

(
TR
mB

) 9−k
k−1

x
2k+6
k−1 . FR (3.30)

These expressions show that bosonic reheating leads to a stronger suppression of the comoving
number density due to entropy dilution as k increases than in the RD case for TR < TFI.
Additionally, the dependence on x becomes steeper with increasing k. In contrast, for fermionic
reheating, the dilution factor weakens as k increases, resulting in a less suppressed comoving
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Figure 3.2: Relic abundance of FIMPs, Ωχh
2, produced during bosonic (blue) and fermionic

(red) reheating as a function of the parameter k, for a fixed mother particle mass mB = 1 TeV
and FIMP mass mχ = 1 GeV, and a reheating temperature TR = 20 GeV. The black dashed line
corresponds to the standard RD era. The two scenarios show opposite behavior with increasing
k.

number density for larger values of k. In both cases, setting k = 2 reproduces the result obtained
in the EMD era, as given in Eq. (3.20).
Since FIMP production is most efficient near xFI, the relic abundance today is given by

Ωχh
2 ≃ x4k+2

FI

(
TR
mB

)4k−1

Ωχh
2|RD, BR (3.31)

Ωχh
2 ≃ x

2k+6
k−1

FI

(
TR
mB

) 9−k
k−1

Ωχh
2|RD, FR (3.32)

where Ωχh
2|RD is given by Eq. (3.13). The resulting relic densities, using xFI = 6 for illustration,

are plotted in Fig. 3.2 for bosonic reheating (solid blue), fermionic reheating (solid red), and
the standard RD case (black dashed). We observe that, in bosonic reheating, the relic density
is suppressed relative to the RD value by a factor (TR/mB)

4k−1. In contrast, for fermionic
reheating, the relic density grows slowly with k.
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3.5 Summary of comoving number density properties in

different early universe scenarios

Table 3.1 summarizes key properties of the comoving number density Ỹχ(x) for FIMPs produced
via freeze-in from decays in different early-universe scenarios. The table includes the scaling of
Ỹχ with x, the entropy dilution factor, and the moment of the freeze-in where the production of
FIMP is suppressed.

Scenario Scaling of Ỹχ(x) Dilution Factor xFI

RD x3 1 ∼3

EMD (k = 2)

(
TR
mB

)7

x10
(
TR
T

)5

∼6

BR (k ≥ 2)

(
TR
mB

)4k−1

x4k+2

(
TR
T

)1+2k

∼6-10

FR (k ≥ 2)

(
TR
mB

) 9−k
k−1

x
2k+6
k−1

(
TR
T

) 7−k
k−1

∼6-10

Table 3.1: Comparison of FIMP production characteristics across different cosmological scenarios.



Chapter 4

The Lyman-α constraints

In this final chapter, we focus on the constraints on FIMPs produced during a reheating period.
In particular, we derive the Lyman-α constraints in both RD and kD eras. To achieve this,
we reinterpret the existing constraints on WDM into FIMPs for the different early universe
scenarios.
We begin in Sec. 4.1 by developing the method for comparing the velocity dispersion of FIMPs
with that of warm dark matter. Then, in Sec. 4.2, we derive the Lyman-α constraints for FIMPs
produced during a RD era. In Sec. 4.3, we proceed with the computation of the constraints in
an EMD era. Finally, in Sec. 4.4, we present the Lyman-α constraints in a kD era, for both
bosonic and fermionic reheating scenarios.

4.1 Velocity dispersion method

In Sec. 1.1.3, we saw that the mass of warm dark matter (WDM) is constrained by Lyman-α,
yielding the lower bound [27]

mLyα
WDM ≥ 5.3 keV. (4.1)

This constraint is derived from expansive hydrodynamical simulations. Rather than repeating
this analysis for FIMPs, we can transpose the Lyman-α bound from WDM to FIMP. Several
methods to do so are discussed in [19]. Both WDM and FIMP belong to the category of non-cold
dark matter, meaning their velocity dispersions at the time of production are non-negligible.
The velocity dispersion of a dark matter particle X is defined as

σX =

√
⟨p2⟩X
mX

, (4.2)

where it depends on the second moment of the momentum distribution function of X and its
mass. We can constrain FIMPs from FI through the decays of a heavy particle by requiring that
their velocity dispersion today is no greater than that of WDM constrained by Lyman-α [19]

σFIMP
0 ≤ σWDM

0 |Lyα. (4.3)

To proceed, we compute the velocity dispersions for both FIMP and WDM. In Chapter 2,
we derived the FIMP momentum distribution function f(q) at the time of freeze-in using the
variables x = mB/T and q = p/T . Hence, we aim to express both WDM and FIMP velocity
dispersions in terms of these variables at the time of production.

44
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We begin with the velocity dispersion of WDM, which is given by

σWDM
0 =

√
⟨p2⟩WDM

0

mWDM

. (4.4)

To compute the second moment at the present time, we use that momenta redshift as 1/a due
to the expansion of the Universe√

⟨p2⟩WDM
0 =

√
⟨p2⟩WDM

FD

aWDM

a0

TWDM

TWDM

=

√
⟨q2⟩WDM

FD

aWDM

a0
TWDM, (4.5)

with TWDM the temperature of WDM at the time of production. We inserted the identity
TWDM/TWDM to make the variable q appear explicitly. Using entropy conservation, we relate
the production temperature to today’s temperature

TWDM =

(
g⋆s(T0)

g⋆s(TWDM)

)1/3
a0

aWDM

T0, (4.6)

where the ratio of g⋆s arises assuming entropy conservation between T0 and TWDM. For thermal
WDM, which was in equilibrium with the thermal bath, its phase space distribution is either
Fermi-Dirac or Bose-Einstein. Its present-day energy density is given by ρWDM = nWDMmWDM,
and the relic abundance obtained through relativistic freeze-out reads

ΩWDMh
2 =

mWDM

94 eV

(
TWDM,0

Tν,0

)3

= 7.5
(mWDM

7 keV

)( 106.75

g⋆(TWDM)

)
, (4.7)

where Tν,0 is the temperature of the neutrino today and TWDM,0 is the temperature of WDM
today [44,45]. In the second equality, we used entropy conservation. Assuming WDM constitutes
all the dark matter, i.e., ΩWDMh

2 = 0.12, we find

g⋆(TWDM) = 953.125
(mWDM

keV

)
. (4.8)

Substituting this into Eq. (4.6) and plugging the result into Eq. (4.5), we obtain√
⟨p2⟩WDM

0 = 0.001

√
⟨q2⟩WDM

FD g⋆s(T0)
1/3

(
keV

mWDM

)1/3

T0, (4.9)

where ⟨q2⟩WDM
FD is the second moment of the FD distribution. Thus, the velocity dispersion of

WDM today becomes [19,44,45]

σWDM
0 = 0.001

√
⟨q2⟩WDM

FD g⋆s(T0)
1/3

(
keV

mWDM

)4/3

T0, (4.10)

where
√

⟨q2⟩WDM
FD ≃ 3. In the following sections, we derive the velocity dispersion of FIMPs

produced during RD, EMD, and kD eras. We then compare these results to the velocity
dispersion of WDM to interpret the Lyman-α constraints into bounds on FIMPs.
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4.2 Radiation-dominated era

We now turn to the computation of the velocity dispersion of FIMPs produced during RD era.
To do so, we calculate the second moment of the momentum distribution function at the time
of freeze-in. As in the case of WDM discussed in the previous section, the velocity dispersion
today corresponds to the redshifted value of the distribution at the time of FI√

⟨p2⟩RD
0 =

√
⟨q2⟩RD

FI

aFI
a0
TFI. (4.11)

Using entropy conservation, we relate the FI temperature to the temperature today

TFI =

(
g⋆s(T0)

g⋆s(TFI)

)1/3
a0
aFI

T0 (4.12)

Combining these results, the velocity dispersion of FIMPs produced in the RD era becomes

σRD
0 =

√
⟨q2⟩RD

FI

mχ,RD

(
g⋆s(T0)

g⋆s(TFI)

)1/3

T0. (4.13)

We compare this to the velocity dispersion of WDM, given in Eq. (4.10), and apply the Lyman-α
bound on WDM, which leads to the constraint

mχ,RD ≥ 0.7 keV

√
⟨q2⟩RD

FI

(
mLy-α

WDM

keV

)4/3

. (4.14)

This constraint depends on the second moment of the FIMP momentum distribution, which is
given by Eq. (2.24). We then find the Lyman-α bound for FIMPs produced during the RD era

mχ,RD ≥ 16 keV

(
mLyα

WDM

5.3 keV

)4/3

. (4.15)

In agreement with [19]. We now turn to the case where FIMPs are produced during an EMD
era. In this scenario, both the second moment of the momentum distribution function and the
entropy evolution differ significantly from the RD case, leading to a modified velocity dispersion
today.

4.3 Early matter-dominated era

In this section we compute the velocity dispersion of FIMP produced during an early matter-
dominated era. As before, the second moment of the momentum distribution today is redshifted
to its value at the time of FI, √

⟨p2⟩EMD
0 =

√
⟨q2⟩EMD

FI

aFI
a0
TFI. (4.16)

However, in this case entropy is not conserved for TFI > T > TR, so we must proceed differently.
We begin by rewriting the factor

(aT )|FI
(aT )|0

=
(aT )|Fi
(aT )|R

(aT )|R
(aT )|0

= D(TFI)
1/3

(
g⋆s(T0)

g⋆s(TFI)

)1/3

. (4.17)
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Figure 4.1: Collider and Lyman-α constraints on FIMP produced during an EMD era, shown
in the (mB,mχ) plane. The colored regions show excluded parameter space. The collider
constraints, derived under a leptophilic scenario, are taken from [20]. The Lyman-α constraints
for RD (orange) and EMD (blue) eras have been computed in Chapter 4. The black dashed
lines indicate values of the mother particle decay width that yield a present-day FIMP relic
density of Ωχh

2 = 0.12.

We have split the ratio into two parts: the evolution from FI to reheating, and from reheating
to today. The second part is straightforward, since after reheating the universe returns to a
radiation-dominated phase where entropy is conserved. This gives the usual ratio of entropy
degrees of freedom. The first term corresponds to the ratio of entropies at freeze-in and reheating,
raised to the one-third power, which is the definition of the dilution factor D(TFI) from Eq.
(3.18). Substituting this into Eq. (4.16) yields the velocity dispersion

σEMD
0 =

√
⟨q2⟩EMD

FI

mχ,EMD

D(TFI)
1/3

(
g⋆s(T0)

g⋆s(TFI)

)1/3

T0. (4.18)

Comparing this to the WDM velocity dispersion, we obtain the Lyman-α bound

mχ,EMD ≥ 0.7 keV

√
⟨q2⟩EMD

FI

(
TRxFI
mB

)5/3
(
mLy-α

WDM

keV

)4/3

, (4.19)

where we used the expression for the dilution factor from Eq. (3.19). This represents the
Lyman-α constraint on FIMPs produced during an EMD era. Compared to the RD case, the
differences lie in the second moment of the momentum distribution function, given by Eq. (2.38)
in EMD and Eq. (2.24) in RD era, and the appearance of the dilution factor.
In Fig. 4.1, we show the Lyman-α constraint in the EMD case, along with CMS and ATLAS
bounds from [20], in the (mB,mχ) plane for TR = 20 GeV. We observe that the constraint
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weakens as mB increases. This behavior arises from the dilution factor at the FI temperature.
The FI temperature is determined by the moment of the FI, typically around xFI ∼ 6, as
discussed in Sec. 3.3, and the mass of the mother particle, TFI = mB/xFI. As mB increases,
so does TFI, which implies a longer duration between freeze-in and reheating. This extended
period allows for more dilution of the FIMP abundance, thereby weakening the constraints.
Furthermore, for a fixed mB, increasing the reheating temperature reduces the time available for
dilution, resulting in a stronger constraint. For instance, at TR = 20 GeV and mB = 200 GeV,
considering mLyα

WDM = 5.3 keV, the constraint becomes mχ ≥ 11.84 keV. This can be compared
to the RD case, where the constraint is independent of the mass of the mother particle and
gives mχ ≥ 16 keV. Additionally, Fig. 4.1 shows that for mB ≤ 120 GeV, the constraints in
both the EMD and RD eras coincide. This occurs because, for such values of mB, the freeze-in
temperature satisfies TFI < TR, implying that the production of FIMPs takes place during the
RD era. Consequently, we recover the standard RD constraint. Dashed black contours in the
Fig. 4.1, indicate the decay width of the mother particle that lead to the observed dark matter
abundance today, assuming FIMPs constitute all the dark matter, i.e., ΩFIMPh

2 = 0.12.

The remaining constraints in Fig. 4.1, taken from Calibbi et al. [20], arise from CMS and
ATLAS searches for various collider signatures, as discussed in Sec. 1.1.3. These signals are
model-dependent. Calibbi et al. consider a leptophilic scenario in which the mother particle is
a scalar ϕB, carrying an electric charge, and the FIMP is a Majorana fermion singlet χ, both
coupling only to right-handed muons. The relevant terms in the Lagrangian are

Llepto ⊃
1

2
χ̄γµ∂µχ− mχ

2
χ̄χ+ (DµϕB)

†DµϕB −m2
ϕB
|ϕB|2 − κϕBχ̄µR + h.c., (4.20)

where κ is a dimensionless Yukawa coupling. The charged scalar ϕB can be pair-produced at
colliders, and depending on its decay rate, gives rise to distinct signals such as displaced leptons
(DL), disappearing or kinked tracks (DT/KT), and heavy stable charged particles (HSCP), as
discussed in [20].

4.4 Early k-dominated era

In this section we compute the Lyman-α constraints on FIMP produced during a reheating
period parametrized by k, which defines the power of the monomial inflaton potential. We
investigate both bosonic and fermionic reheating scenarios.

The method we employ is the same as for the EMD era. First, we express the second moment
at the freeze-in temperature. Then, we describe the ratio of aT in terms of the dilution factor
D(TFI, k) and the ratio of effective degrees of freedom. This leads to the following expressions
for the velocity dispersion of FIMPs produced during bosonic and fermionic reheating

σΥ
0 =

√
⟨q2⟩ΥFI
mχ,Υ

DΥ(TFI, k)
1/3

(
g⋆s(T0)

g⋆s(TFI)

)1/3

T0, (4.21)

where Υ = BR or FR, and DΥ(TFI, k) is the dilution factor given by Eq. (3.27) for bosonic
reheating and Eq. (3.28) for fermionic reheating. The two scenarios differ for 2 < k < 7 due to
the different k-dependence of their second momenta and dilution factors, see Secs. 2.4.3 and
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2.4.2. It leads to the Lyman-α constraints for FIMPs produced during bosonic reheating

mχ,BR ≥ 0.7 keV

√
⟨q2⟩BR

FI

(
TRxFI
mB

) 1+2k
3

(
mLy-α

WDM

keV

)4/3

, (4.22)

and during fermionic reheating

mχ,FR ≥ 0.7 keV

√
⟨q2⟩FRFI

(
TRxFI
mB

) 7−k
3k−3

(
mLy-α

WDM

keV

)4/3

. (4.23)

In Figs. 4.2a and 4.2b, we show the Lyman-α constraints on FIMPs produced via the decay of
a heavy mother particle B during bosonic (a) and fermionic (b) reheating in the (k, TR/mB)
parameter space. The lower bound on the FIMP mass, mLyα

χ , which saturates Eqs. 4.22 and
4.23, is indicated by a color gradient, with red representing stronger bounds and blue weaker
ones. The maximum value of TR/mB shown on the plots is 0.16, corresponding to TR = TFI
with xFI = 6. Beyond this point, FIMPs are produced during a radiation-dominated era, and
the constraints reduce to the standard RD given by Eq. (4.15).
In Fig. 4.2a (bosonic reheating), we observe that the Lyman-α constraints become stronger for
larger reheating temperatures TR, and weaker for higher values of the parameter k for TR ≪ TFI.
This behavior arises from the dilution factor that enters the Lyman-α constraints, which scale
as mχ,BR ∝ (TRxFI/mB)

1+2k
3 . For fixed values of k and mB, increasing TR reduces the time

available for dilution, thereby leading to stronger constraints. The exponent 1+2k
3

is positive
and increases with k for k ≥ 2, so for a fixed TR and mB, increasing k enhances the dilution
and thus weakens the constraints. However, this trend changes as TR approaches the freeze-in
temperature TFI. In this regime, the second moment of the momentum distribution, which also
influences the Lyman-α bounds, increases with k, as shown in Eq. (2.60). This enhanced second
moment strengthens the constraints and competes with the dilution effect. When TR ≪ TFI,
dilution dominates and the constraints weaken with increasing k, as previously described. But
as TR approaches TFI, the effect of dilution diminishes, and the growing second moment becomes
the dominant factor. As a result, for fixed TR ≲ TFI, increasing k actually leads to stronger
constraints.
In Fig. 4.2b (fermionic reheating), the constraints scale as mχ,FR ∝ (TRxFI/mB)

7−k
3k−3 . As in the

bosonic case, for fixed k and mB, increasing the reheating temperature reduces dilution and
results in stronger constraints. The exponent 7−k

3k−3
is positive and decreases with k for 2 ≤ k < 7.

Therefore, at fixed TR and mB, increasing k suppresses dilution and leads to stronger constraints.
In this regime, the second moment also increases with k, but, as shown in Eq. (2.67), it quickly
saturates to a plateau and thus contributes only marginally to the variation in constraints as k
increases.
These Lyman-α constraints on FIMPs produced during bosonic and fermionic reheating demon-
strate that for 2 < k < 7, the details of the reheating history have a non-negligible impact on
FIMP properties.
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(a)

(b)

Figure 4.2: Lyman-α constraints on FIMP mass in the (k, TR/mB) plane for (a) bosonic
reheating and (b) fermionic reheating. The lower bound on the FIMP mass is indicated with a
gradient of color, where red corresponds to stronger constraints and blue to weaker ones. Note
that the legends differ between the two plots.



Conclusion

In this master thesis, we have investigated feebly interacting massive particles (FIMPs) as
dark matter candidates, focusing on their production from freeze-in through the decay of a
heavy mother particle during non-standard early cosmological scenarios. By extending the
analytical framework beyond the standard radiation-dominated era, we have demonstrated that
the properties of FIMPs and the resulting constraints depend significantly on the history of the
early universe.

Our analysis began with the development of a general formalism to compute the momentum
distribution functions of FIMPs. Starting from the Boltzmann equation, we derived analytical
solutions for three distinct cosmological scenarios: the standard radiation-dominated era, an
early matter-dominated era, and more general k-dominated eras where the inflaton potential
follows a power-law form V (ϕ) ∝ ϕk. For k-dominated scenarios, we further distinguished
between bosonic and fermionic reheating mechanisms, which exhibit different behaviors for
2 < k < 7.
A key result of our work is that the momentum distribution functions differ significantly between
these scenarios. In the radiation-dominated era, the distribution scales as q−1/2e−q, while in an
early matter-dominated era, it follows q1/2e−q. For general k-dominated scenarios, we found that

the distribution scales as qk−3/2e−q for bosonic reheating and q
3k−5
2k−2 e−q for fermionic reheating.

These differences affect the typical velocity of dark matter at production, as quantified by the
second moment of the momentum distribution function.
We also computed the comoving number densities in these scenarios and identified an important
effect absent in standard cosmology: entropy dilution during reheating. This dilution suppresses
the final abundance of FIMPs by factors that depend strongly on both the reheating temperature
and the parameter k that characterizes the inflaton potential. For bosonic reheating, this

suppression scales as (TR/mB)
4k−1, while for fermionic reheating, it scales as (TR/mB)

9−k
k−1 ,

highlighting the qualitatively different impacts of these reheating mechanisms. We also use
the comoving number density to define the moment of freeze-in, which occurs at different
times depending on the cosmological scenario considered : xFI ∼ 3 in RD era, and xFI ∼ 6 in
non-standard cosmologies, shifting to slightly later times.
Finally, by reinterpreting existing Lyman-α constraints on warm dark matter to the case
of FIMPs, we derived bounds on FIMP properties for various early cosmological scenarios,
comparing their respective velocity dispersions. In the radiation-dominated era, we found a lower
bound on the FIMP mass of mχ,RD ≥ 16 keV, in agreement with the literature [19]. For the early
matter-dominated era, this constraint is modified by the dilution factor and the different second
moment, resulting in a lower mass bound that depends explicitly on the reheating temperature
and the mass of the mother particle. For k-dominated scenarios, the constraints exhibit even
more complex behavior, with an opposite dependence on k for bosonic reheating and fermionic
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reheating.

These results demonstrate that the early cosmological history can leave distinctive imprints on
the properties of feebly interacting massive particles.
Future work could build upon and refine these results. We have shown that different cosmological
scenarios lead to distinct velocity dispersions. This feature could be implemented in Boltzmann
codes, such as CLASS, to study the impact of velocity dispersion on the matter power spectrum.
Additionally, our constraints could be updated by incorporating the latest LHC bounds, which
may significantly tighten the viable parameter space for the mother particle. Our results could
also be improved by including several physical effects that were neglected in this study. For
instance, thermal corrections to decay rates become important when the mother particle mass
approaches the bath temperature, potentially altering the resulting momentum distributions.
Moreover, the assumption of a constant number of effective relativistic degrees of freedom could
be relaxed to include the temperature dependence of g⋆(T ), which is particularly relevant for
low reheating temperatures near the era of Big Bang Nucleosynthesis.
These results can be extended further by considering alternative reheating scenarios and
incorporating additional observational constraints. While this thesis has focused on a specific
FIMP production mechanism via the decay of a heavy mother particle B, 2-to-2 scattering
processes may also contribute significantly, especially in the regime wheremB−mχ ≪ mB. These
processes could produce different momentum distributions, leading to potentially distinct Lyman-
α constraints. Furthermore, the framework developed here can be applied to other dark matter
candidates whose properties are shaped by early-universe dynamics, such as weakly interacting
massive particles (WIMPs) [43,46]. By comparing the resulting momentum distributions and
their impact on structure formation, it may be possible to identify observational signatures that
distinguish between dark matter models and shed light on the physics of the universe’s earliest
stages.
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