
Beyond SM - Exercices

1 Groups, spinors and gauge transformations

1. For Lie Groups, a group element arbitrarily close to the identity can be expanded as:

U = I + iαaT a (1)

where αa are real parameters and T a are the generators. The latter form a Lie algebra
that is defined though the commutation relations:

[T a, T b] = ifabcT c (2)

where fabc are the structure constants and are real.

(a) For U a group element of SU(N) determine the properties of the generators (her-
mitian, etc) and, for N × N transformations (corresponding to the fundamental
representation) determine the number of the group generators (corresponding to
the dimension of the algebra).

(b) Check that for SU(2), the generators T a = σa/2, where σa are the Pauli Matrices,
satisfy the commutation relations above with fabc = εabc.

(c) Check that for SU(2), the representation of dimension 2 satisfy −T a∗ = UT aU †

with U = iσ2. This representation is said to be pseudo-real.1

(d) Consider an SU(2) lepton doublet,

Le = (νeL eL)T . (3)

How does this doublet transforms under an SU(2) transformation described by (1)
with α3 = α, and α1 = α2 = 0.

2. We are now going to look at the Lorentz transformations acting on spinors.

(a) The 4 dimensional matrices Sµν = i/4[γµ, γν ] provide a representation of the
Lorentz algebra. Give the form of S0i and Sij in terms of the Pauli matrices using
the Weyl representation of the Dirac matrices γµ.

(b) Considering that a Dirac Spinor transform as Ψ → exp(−iωµνSµν)Ψ, where ωµν
is ar antisymmetric tensor, check that the left and right components of the spinor
Ψ = (ψL ψR)T

• transform in the same way when considering an infinitesimal rotation of angle
ω12 = −ω12 = θ in the xy plane

1For a given representation R described with the generators T aR, the complex conjugate representation R̄
with T aR̄ = −T a∗R is also a representation as it satisfy (2). A real representation satisfy T aR̄ = T aR (or there
is a unitary transformation V such that T̃ aR = V −1T aRV satisfy T̃ aR̄ = T̃ aR). You can check that the Adjoint
representations of SU(N) or the fundamental representations of SO(N) are real representations.
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• transform differently under an infinitesimal boost of rapidity ω01 = −ω10 = β
in the x-direction.

This is directly related to the fact that the Dirac representation of the Lorentz
group is reducible.

(c) Check that iσ2χ∗L transforms as ψR using the last item of Exercise 1

(d) Check that χTLiσ
2ψL is a scalar under Lorentz transformations, conclude that Ψ̄Ψ

with Ψ = (ψL ψR)T is a Lorentz scalar.

3. Considering the covariant derivative

Dµ = ∂µ − igAµ , (4)

the field strength can be defined as [Dµ, Dν ] = −igFµν .

(a) For an abelian gauge group check that Fµν = ∂µAν − ∂νAµ .

(b) For a non abelian gauge group check that F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν with

Fµν = F aµνT
a and Aµ = AaµT

a .

4. The kinetic term for and SU(2)L×U(1)Y lepton doublet Le = (Le1 Le2)
T with Le1 = νeL

and Le2 = eL reads L̄e /DLe with Dµ = ∂µ − ig′YeLBµ − igWµ and Wµ = W a
µ
σa

2 . In the
compact expression of this kinetic term, write explicitly the sum over SU(2), Lorentz
and spinor indices.

2 Processes

In order to fix the notations, here we follow the notations of [1] describing a Dirac spinor as

ψ (x, t) =
∑
s

∫
d3k

(2π)3
√

2Ek

(
ak,su (k, s) e−ikx + b†k,sv (k, s) eikx

)
. (5)

The sum runs over spin values s and a†k,s

(
b†k,s

)
creates a particle (antiparticle) of momentum

~k and spin s. The spinors u and v obey the Dirac equations

(/k −m)u (k, s) = 0
(/k +m)v (k, s) = 0 (6)

with the sums: ∑
s

u (k, s) ū (k, s) = /k +m,
∑
s

v (k, s) v̄ (k, s) = /k −m (7)

For a vector, we use:

V µ (x, t) =
∑
λ

∫
d3k

(2π)3
√

2Ek

(
ak,λε

µ
k,λe

−ikx + b†k,sε
µ∗
k,λe

ikx
)

(8)

where the sum runs over the polarizations λ and the εµk,λ are the polarization vectors that
satisfy:

εµk,λεk,λ′ µ = −δλλ′ and kµε
µ
k,λ = 0 . (9)
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Also, in order to calculate decay widths, you can make use of the following expression for the
decay width [2]:

dΓ(X → ab) =
1

32π2
|M|2 |~pa|

m2
X

dΩ (10)

which is valid in the restframe of the particle X. |M|2 refers to the transition matrix
squared summed (averaged) over final (initial) state polarization and spins and ~pa and
dΩ = dφad cos θa are the momentum and the solid angle of particle a respectively.

2.1 Decay of a gauge boson and number of νL families

1. Compute the decay width for the process:

W− → e−ν̄e (11)

neglecting electron and the neutrino masses. For that purpose, use the lagrangian for
gauge boson-lepton interactions that were obtained in the lectures. You can also use of
the following tools:

(a) the sum over the polarization vectors of the on-shell W boson of 4-momentum k
is given by

∑
λ ε

µ
k,λε

ν ∗
k,λ = −gµν + kµkν

m2
W

(b) tr(any odd nb. of γ’s)=0

(c) tr
(
γαγβγµγν

)
= 4

(
gµνgαβ − gµαgνβ + gανgµβ

)
(d) tr

(
γαγβγµγνγ5

)
= −4i εαβµν

(e) γ†µ = γ0γµγ0 in Dirac and Weyl representations.

2. Compute the decay width for the process:

Z → ν̄ν . (12)

You can use the similitudes between the Lagrangians driving (13) and (12) for a rapid
evaluation.
This is of interest because the total decay width of the Z boson can be obtained ana-
lyzing the total cross-section for e+e− annihilation at the Z pole obtained at LEPI and
SLAC. Compare the obtained decay width with the invisible decay width of Z obtained
experimentally (see e.g. PDG) and deduce the number of families of active neutrinos
in Nature.

2.2 Decay of SM scalar boson

1. Compute the tree level decay width for the processes:

h→ ff̄ , V V (13)

where f are SM fermions and V = Z,W gauge bosons.

2. Could the V (∗)V ∗ final state (with one or two offshell V boson) be the most important
contribution to the h decay width for mh < 2mV ? Argue why.

3. Draw the lowest order contributions to h→ gg, γγ, Zγ.
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2.3 Decay of the top quark and Goldstone bosons

1. Compute the decay width for the process:

t→W+b (14)

using the lagrangian for gauge boson-quarks interactions that were obtained in the
lectures and assuming that the CKM matrix element |Vtb| ' 1 and neglecting the mass
of the bottom quark.

2. Compute the decay width for the process:

t→ φ+b , (15)

where φ+ is the charged Goldstone boson appearing in the decomposition of the Stan-
dard Model (SM) scalar doublet (use the top-SM scalar yukawa interactions). Compare
to the result obtained in the previous exercise and discuss.

3 Flavours and Discrete symmetries

1. Charge conjugation

(a) Under charge conjugation, you have the following transformations:

ψ → Cψ̄t, Aµ → −Aµ, φ→ φ∗, i→ i (16)

where ψ is a Dirac Spinor, Aµ is the photon vector field, φ is a complex scalar and
one can take C = iγ0γ2.

We have already mentionned during the lecture that charge conjugation is directly
related to complex conjugation. To understand this better take the complex con-
jugate of the equation:

(i /D −m)ψ = 0 Dµ = ∂µ − iQeAµ (17)

and after checking that the new gamma matrix γ̃µ = γ2γµ∗γ2 also satisfy the
Clifford algebra, obtain that ψc = Cψ̄t = −γ2ψ∗ satisfy the same equation but
with an oposite coupling (charge) to the photon field.

(b) Without using the explicit form of the charge conjugation above, check that for
the free hamiltonian of a Dirac field to be invariant under charge conjugation, you
have to satisfy:

− γtµ = C†γµC . (18)

Begin with the mass term to first get the µ = 0 result.

(c) Obtain the transformation of ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ, ψ̄γµγ5ψ

2. Parity transformation (~x→ −~x and ~p→ −~p)

ψ → γ0ψ, Aµ → (A0,−Ai), φ→ φ, i→ i (19)

Obtain the transformation of ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ, ψ̄γµγ5ψ
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3. Time reversal (t→ −t )

ψ → γ1γ3ψ, Aµ → (A0,−Ai), φ→ φ, i→ −i (20)

Obtain the transformation of ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ, ψ̄γµγ5ψ

4. Check that weak interactions violate C and P but conserve CP, and determine under
which condition the Yukawa interactions are CP invariant.

5. Check that no mixings appear in the SM fermion coupling to the Z (ie no flavour
changing neutral currents at tree level)

4 Chiral gauge theories and Anomalies

1. Check that the Noether currents Jµ and Jµ5 associated to

(a) the vector symmetry transformations Ψ→ eiαΨ

(b) the chiral symmetry transformations Ψ→ eiβγ5Ψ

are conserved for a Dirac field when taking the massless limit.

Using the Dirac equation in the m 6= 0 case compute the expression of ∂µJ
µ and ∂µJ

µ
5 .

Figure 1: One loop Diagrams involved in π0 → γγ

2. When computing the decay width of π0 → γγ involving the diagrams of Fig. 1, with
some massive fermion Ψ of mass m running into the loop, one ends up evaluating the
following integral over momenta:

Mµν = −i
∫

dk4

(4π)4
Tr

(
γµ(/k +m)γν(/k + /q2 +m)γ5(/k − /q1 +m)

(k2 −m2)((k + q2)2 −m2)((k − q1)2 −m2)
+ (µ↔ ν&1↔ 2)

)
(21)

(a) check that the numerator reduces to 4imεµναβq1αq2β using the properties of the
traces of gamma matrices.
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(b) Making use of the Feynman parameters, use the following identity:

1

A1...An
= (n−1)!

∫ 1

0
dx1

∫ x1

0
dx2...

∫ xn−2

0
dxn−1

1

(A1xn−1 + ...+An−1(x1 − x2) +An(1− x1))n
(22)

to rewrite the denominator of (21) as one single polynomial function of k to the
cube.

(c) make a change of coordinate k → k′ = k′(k, xi, q1, q2)) such that the latter denom-
inator takes the form of (k′2 − ∆ + iε)3 where ∆ is independent of k′. You can
then use ∫

dl4

(2π)4
1

(l2 −∆ + iε)3
= i

∫
dl4E

(2π)4
1

(−l2E −∆ + iε)3
=

−i
32π2∆

(23)

resulting from a Wick rotation and lE the euclidian momentum associated to the
4-momentum l (l2E = l20 +~l2).

(d) Considering that the 2 outgoing photons are onshell (q21 = q22 = 0) and in the limit
m� mπ (e.g. in the case where the fermion in the loop is a proton) check that

Mµν = εµναβq1αq2β
−i

4π2m
(24)

3. In order to evaluate the chiral anomaly (considering massless fermions), one considers
the 3-point correlation function 〈Jα5(x)Jµ(y)Jν(z)〉 and check if ∂/∂xα〈Jα5(x)Jµ(y)Jν(z)〉
is zero (same for ∂/∂yµ and ∂/∂zν). Going to momentum space, one ends up evaluate-
ing the same kind of loop diagrams than for the exercise above but without pion or
photon external line and the γ5 insertion is replaced by γαγ5. We will thus deal with

Mαµν
5 = −i

∫
dk4

(2π)4
Tr

(
γµ(/k)γν(/k + /q2)γ

αγ5(/k − /q1)

k2(k + q2)2(k − q1)2
+ (µ↔ ν&1↔ 2)

)
(25)

using the same momentum routing as in Fig. 1. Here your goal is to compute q1µM
αµν
5 .

The resulting integrand is actually linearly divergent and care has to be taken when
shifting the variable over which we are integrating.

In the computation you will encounter the difference between two linearly divergent
4-D integral that differ from one another by a shift aµ:

∆α(aµ) =

∫
d4k

(2π)4
(Fα(k + a)− Fα(k)) (26)

making use of Wick rotation and Taylor expansion, assuming that Fα(kE)→ AkαE/k
4
E

for kE →∞, you get that:

∆α(aµ) =
i

32π2A
aα . (27)

Using this result show that q1µM
αµν
5 6= 0:

q1µM
αµν
5 =

1

4π2
εµνρσqρ1q

σ
2 . (28)

6



5 Beyond SU(3)× SU(2)× U(1)
1. In SU(5), we consider the basis for the fundamental (or vector) representation 5, or

better said its complex conjugate denoted by 5∗ or 5̄. Notice that here, we will be
considering the notation: ψ∗i ≡ ψi. 2 Considering that the 5, transforms as:

ψi → UF
j
iψj = exp(iαaT aF )jiψj (29)

with i, j = 1, .., 5 and a = 1, .., 24 with T aF satisfying (2) and F referring to the fun-
damental representation, determine the transformation of the 24 and the 10 in terms
of the U matrices of transformation of the fundamental representation. For the latter
purpose, use the following hints:

(a) The 24 is the adjoint representation of SU(5), i.e., the associated generators
satisfy (T bA)ac = ifabc, where A refers to the adjoint representation. Using the
latter information check that, say a scalar field Φ = ΦaT aF ∼ 24, transforms as
Φ→ UΦU † for U the unitary transformation of (29). use

(b) The 10 can be obtained from the anti symmetric part of the tensor product 5×5,
or equivalently χij ∼ 1

2(ψiψj − ψjψi). As a result show that χ→ UχUT .

Using these results:

(a) check that (use e.g. (T b)ac = ifabc) the covariant derivative takes the form: DµΦ =
∂µΦ− ig[Aµ,Φ]. In addition, taking into account that the adjoint representation
has the same quantum numbers as the product of the fundamental represention
by the fundamental complex conjugate representation, Φj

i ∼ ψiψ
∗
j , check that

the EM charges of each components of Φ ∼ 24 can be obtained from Q(Φj
i ) =

Q(ψi)−Q(ψj).

(b) check that the covariant derivative of χ takes the form: Dµχ = ∂µχ − ig{Aµ, χ}
with {Aµ, χ} = Aµχ + χATµ . In addition, check that the EM charges of each
components of χ ∼ 10 can be obtained from Q(χij) = Q(ψi) +Q(ψj).

with Aµ =
∑

aA
a
µT

a.

2. In order to obtain the decomposition of tensor products of representations (reducible
representations) in SU(N) in terms of irreducible representations Young tableaux ap-
pear to be a very efficient tool. For a short introduction, see e.g. http://pdg.lbl.

gov/2014/reviews/rpp2014-rev-young-diagrams.pdf.

(a) With the help of Young tableaux, decompose 3⊗ 3 and 3⊗ 3 in SU(3), and 5⊗ 5
and 5⊗ 5 in SU(5). Also decompose 2⊗ 2 in SU(2). Anything special about the
latter?

(b) The quintuplet of SU(5) can be decomposed as a direct sum of multiplets of
SU(3)×SU(2): 5 = (3,1) ⊕ (1,2). Compute 5 ⊗ 5 and 5 ⊗ 5 in this decom-
position and find the decomposition for the 10, 15 and 24. Identify the SM gauge
bosons in the adjoint representation.

2 In the SU(5) GUT model that we will consider, we will take ψ∗i ≡ ψi = (dc1, d
c
2, d

c
3, e
−,−νe)TL .
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6 Aspects of Neutrino physics

1. Considering a neutrino a flavour α as a combination of mass eigenstates: |να〉 =∑
i Uαi|νi〉

(a) Check that, after having prapagated along some distance L, the probability for να
to νβ transition is given by :

P (να → νβ) =
∑
ij

J ijαβ exp
(
−i∆m2

ijL/(2E)
)

with J ijαβ = U∗βjUαjUβiU
∗
αi

and m2
ij = m2

j −m2
i (30)

(b) Using the unitarity of the mixing matrix U , show that:

P (να → νβ) = δαβ − 4
∑
i>j

Re[J ijαβ] sin2
(
∆m2

ijL/(4E)
)

+2
∑
i>j

Im[J ijαβ] sin
(
∆m2

ijL/(2E)
)

(31)

(c) Using the above result and making use of ∆m2
12 � ∆m2

13, the transition probabil-
ity in the 3 family case effectively reduces to a 2 family problem in several cases.
Show for example that considering E/L ∼ ∆m2

13 the disappearance probability
P (νe → νe) is at leading order a function of θ13 and ∆m13.

2. Majorana versus Dirac:

(a) For a Majorana fermion: L = ψ̄Li/∂ψL − m
2 (ψ̄Lψ

c
L + h.c.),

i. check that the above Majorana mass term is equivalent to −m
2 (ψTLCψL+h.c.)

ii. check that for ψM = ψL + ψcL, one has: L = 1
2 ψ̄M (i/∂ −m)ψM

(b) Also for Dirac fermion ψ = ψL+ψR, defining ψM1 = ψL+ψcL and ψM2 = ψR+ψcR,
show that mψ̄ψ = m

2 ψ̄M1ψM2 + m
2 ψ̄M2ψM1

3. A n× n Majorana mass matrix, contains how many physical phases ?
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